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Quantum error correction
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Sources of error and why we need correction

❖ Huge registers

❖ Multiple gates

❖ High Speed >> Faster error 
propagation

ERRORS

Environment

Technological
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Classical error correction           Extension to QEC…?!

❖ N-BIT REPETITION CODE

Error detection by majority rule

CLONING DIRECT 
MEASUREMENT

Exploiting redundancy
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Conceptual setting of a QEC code
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CNOT gate
CNOT gate

July , 20215th Machine Learning Quantum Matter



3-Qubit bit flip code
❖ Idea : Distribute logical information (an arbitrary quantum state) over  entangled state of three qubits.

Encoding circuit
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Indirect measurement

❖ 1: Even parity —> 
parallel orientation

❖ -1: Odd parity —> anti-
parallel orientation

M Z
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Correction

Error Syndrome Correction
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Fails for more than one error!
Fails for phase flip errors!

More sophisticated QEC codes: 9-bit Shor’s code, Toric code etc.



Reinforcement Learning
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Setting

πpolicy

July , 20215th Machine Learning Quantum Matter



Deep Q

❖ Neural network used to 
approximate the Q-value 
function

❖ The state is given as input 
and the Q-value of all 
possible actions is 
generated as output
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Policy Gradient
δθ = α∇θJ(θ)

∇θπθ(s, a) = πθ(s, a)
∇θπθ(s, a)

πθ(s, a)

= πθ(s, a)∇θlogπθ(s, a)

❖  : networks weights and biases.

❖  : Objective function

❖  : Learning rate parameter

θ

J

α
❖  : Policyπθ
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Objective Function

❖ Expected return maximised by applying the policy gradient update rule:    

δθ = α∇θJ(θ)

❖ Starting in state s ~ d(s)

❖ Terminating after one time-step with reward r 
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Reinforcement learning with neural 
networks for quantum feedback : Setup
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RL setting of the QEC problem

Task: To preserve an arbitrary quantum state initially stored in qubits 
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Why RL? 

❖ Autonomous!
• No requirement of a model

❖ Feedback based control optimal for QEC
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Failure of RL

⃗ρ Experiments



Two stage learning
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πpolicy
Agent

State aware network : Input

̂ρ0 =
1
2 [ ̂ρ ⃗e j

(0) + ̂ρ− ⃗e j
(0)]

δ ̂ρj =
1
2 [ ̂ρ ⃗e j

(0) − ̂ρ− ⃗e j
(0)] ̂ρ1 := ̂ρ0 + δ ̂ρx

Action : 
Measurement/Gate 

Operation

̂ρ2 := ̂ρ0 + δ ̂ρy

̂ρ3 := ̂ρ0 + δ ̂ρz

̂ρ0
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πpolicy
Agent

State aware network : Time evolution
Action : 

Measurement/Gate 
Operation

̂ρ(tf) =
ϕ[ ̂ρ0(ti)]

tr{ϕ[ ̂ρ0(ti)]}

δ ̂ρ(tf) =
ϕ[δ ̂ρ0(ti)]

tr{ϕ[ ̂ρ0(ti)]}

ϕ[ ̂ρ] = eΔtD(Û ̂ρÛ†)
❖  : Unitary 

operation( projection 
operators/gate operators)

❖  : Dissipative part from the 
error model employed

E.g. for bit flip:

          

Û

D

DBF ̂ρ =
∑j ( ̂σx ̂ρ ̂σx − ̂ρ)

Tdecay
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State aware network : Recoverable Quantum Information

Time evolved states

Reward (based on R)

Recoverable Quantum Information

RQ(t) =
1
2

min ⃗n ̂ρ ⃗n (t) − ρ− ⃗n (t)
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Remaining information in evolved state?

Success in distinguishing antipodal logical states?



State aware network : Recoverable Quantum Information

Time evolved states

Reward (based on R)

RQ(t) = min ⃗n ∑
j

njδ ̂ρj(t)

Recoverable Quantum Information
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Remaining information in evolved state?

Success in distinguishing antipodal logical states?



State  ρ(t + δt)

Return 
function(based on 

Rewards)

Recoverable Quantum 
Information

State aware network : Reward Function
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Environment Dissipation  based on 
this action 

State  
determined using this 

dissipation model

ρ(t + δt)

πpolicy
Agent

Action : 
Measurement/Gate 

Operation

Return 
function(based on 

Rewards)

State aware network

Recoverable Quantum Information
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RQ(t) = min ⃗n ∑
j

njδ ̂ρj(t)



Recurrent Network

❖ Applied in experiments

❖ Receives measurement results, most recent 
action 

❖ Trained using supervised learning

❖ Training data: input and policy for each time 
step in each trajectory

❖ Memory
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Results
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Learns encoding and adaptive detection
Error model: 

∂ ̂ρ
∂t

=
∑j ( ̂σx ̂ρ ̂σx − ̂ρ)

Tdecay

Full connectivity!
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Learns encoding and adaptive detection
Error model: 

∂ ̂ρ
∂t

=
∑j ( ̂σx ̂ρ ̂σx − ̂ρ)

Tdecay

Full connectivity!

Red: after 60 epochs
Blue: after 160 epochs

Green: Mostly converged 
Dashed: averaged over many 

trajectories 
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Learns encoding and adaptive detection
Error model: 

∂ ̂ρ
∂t

=
∑j ( ̂σx ̂ρ ̂σx − ̂ρ)

Tdecay

Full connectivity!
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Discovers feedback strategies based on available resources

A)  CNOT gates only available between nearest neighbours; single measurement location.

B) CNOT gates only available between nearest neighbours; every qubit can be measured

C) Ring like connectivity for CNOTs; measurement on first qubit
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Discovers feedback strategies based on available resources

  = 1200 is the single qubit decoherence time (in units of gate time that defines the time step)

 extracted from decay of R_Q after 200 steps

Tdec

Teff
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Discovers feedback strategies based on available resources



Summary

❖ QEC from scratch

❖ Detection and recovery sequences for diverse settings

❖ Trained neural networks can be applied to experiments

❖ This approach can be applied to diverse noises/errors

❖ RL is a flexible and general tool which can be used for exploring problems 
requiring feedback based control in physics.
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Thank You !
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