Seminar: Reinforcement Learning Quantum Error Correction

Machine Learning Quantum Matter

Sakshi Pahujani Supervised by: Kai Meinerz

A. Quantum Error Correction

Machine Learning Quantum Matter

Contents

- B. Reinforcement Learning
- C. Reinforcement Learning with neural networks for
 - Quantum Feedback (Fosel et al.) : Problem Setup
 - Results

Machine Learning Quantum Matter

Quantum error correction

Sources of error and why we need correction

- High Speed >> Faster error propagation
- * Multiple gates
- * Huge registers

Classical error correction

N-BIT REPETITION CODE Exploiting redundancy

Machine Learning Quantum Matter

Extension to QEC...?!

Conceptual setting of a QEC code

Machine Learning Quantum Matter

CNOT gate

NOT =

0 1 0 0 CNOT =0 1 0 $\mathsf{L}\mathsf{0}$ 0

3-Qubit bit flip code

Encoding circuit

Machine Learning Quantum Matter

* Idea : Distribute logical information (an arbitrary quantum state) over entangled state of three qubits.

 $(\alpha |0\rangle + \beta |1\rangle) |0\rangle |0\rangle \xrightarrow{C_1 NOT_2} (\alpha |00\rangle + \beta |11\rangle) |0\rangle \xrightarrow{C_1 NOT_3} (\alpha |000\rangle + \beta |111\rangle)$

Indirect measurement

nput state	Ancillar	Measuremen
$0\rangle$	$ 0\rangle$	1
$1\rangle$	$ 1\rangle$	-1
$0\rangle$	$ 1\rangle$	-1
$1\rangle$	$ 0\rangle$	1

- * 1: Even parity —> parallel orientation
- * -1: Odd parity —> antiparallel orientation

Correction

Machine Learning Quantum Matter

July 5th, 2021

Fails for more than one error! Fails for phase flip errors!

More sophisticated QEC codes: 9-bit Shor's code, Toric code etc.

Reinforcement Learning

Machine Learning Quantum Matter

Setting

Deep Q

Deep Q Learning

Machine Learning Quantum Matter

Q-Value

Q-Value Action 1
O-Value Action 2
-
-
Q-Value Action N

- Neural network used to approximate the Q-value function
- The state is given as input and the Q-value of all
 possible actions is
 generated as output

Policy Gradient

$$\delta\theta = \alpha \nabla_{\theta} J(\theta)$$
$$\nabla_{\theta} \pi_{\theta}(s, a) = \pi_{\theta}(s, a) \frac{\nabla_{\theta} \pi_{\theta}(s, a)}{\pi_{\theta}(s, a)}$$

$= \pi_{\theta}(s, a) \nabla_{\theta} log \pi_{\theta}(s, a)$

- * θ : networks weights and biases.
- * *J* : Objective function
- * α : Learning rate parameter

*
$$\pi_{\theta}$$
: Policy

Objective Function

- Starting in state $s \sim d(s)$
- * Terminating after one time-step with reward r

 $J(\theta) = \mathbb{E}_{\pi_{\theta}}[r]$ $=\sum_{s\in\mathcal{S}}d(s)$ $abla_ heta J(heta) = \sum d(s)$ $s \in S$ $= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) r \right]$

* Expected return maximised by applying the policy gradient update rule:

$$\delta\theta = \alpha \nabla_{\theta} J($$

Machine Learning Quantum Matter

$$\sum_{a \in \mathcal{A}} \pi_{ heta}(s, a) \mathcal{R}_{s, a}$$

 $\sum_{a \in \mathcal{A}} \pi_{ heta}(s, a)
abla_{ heta} \log \pi_{ heta}(s, a) \mathcal{R}_{s, a}$

 (θ)

Reinforcement learning with neural networks for quantum feedback : Setup

Reinforcement Learning with Neural Networks for Quantum Feedback

Thomas Fösel, Petru Tighineanu, and Talitha Weiss

Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany

Florian Marquardt

Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany and Physics Department, University of Erlangen-Nuremberg, Staudtstraße 5, 91058 Erlangen, Germany

(Received 23 April 2018; revised manuscript received 12 June 2018; published 27 September 2018)

Machine learning with artificial neural networks is revolutionizing science. The most advanced challenges require discovering answers autonomously. In the domain of reinforcement learning, control strategies are improved according to a reward function. The power of neural-network-based reinforcement learning has been highlighted by spectacular recent successes such as playing Go, but its benefits for physics are yet to be demonstrated. Here, we show how a network-based "agent" can discover complete quantum-error-correction strategies, protecting a collection of qubits against noise. These strategies require feedback adapted to measurement outcomes. Finding them from scratch without human guidance and tailored to different hardware resources is a formidable challenge due to the combinatorially large search space. To solve this challenge, we develop two ideas: two-stage learning with teacher and student networks and a reward quantifying the capability to recover the quantum information stored in a multiqubit system. Beyond its immediate impact on quantum computation, our work more generally demonstrates the promise of neural-network-based reinforcement learning in physics.

DOI: 10.1103/PhysRevX.8.031084

Machine Learning Quantum Matter

Subject Areas: Computational Physics, Interdisciplinary Physics, Quantum Information

RL setting of the QEC problem

Task: To preserve an arbitrary quantum state initially stored in qubits

* Autonomous!

- No requirement of a model
- * Feedback based control optimal for QEC

Machine Learning Quantum Matter

develop own strategies (no teacher)

Failure of RL

(a) **State-aware network** Quantum states (representing the map for evolution of arbitrary input state up to time t)

Experiments

Two stage learning

State-aware network

Quantum states (representing the map for evolution of arbitrary input state up to time *t*)

Machine Learning Quantum Matter

Recurrent network

Measurement results

Action probabilities

State aware network : Input

$$\hat{\rho}_0 = \frac{1}{2} \left[\hat{\rho}_{\overrightarrow{e}_j}(0) + \hat{\rho}_{-\overrightarrow{e}_j}(0) \right]$$

$$\delta \hat{\rho}_{j} = \frac{1}{2} \left[\hat{\rho}_{\overrightarrow{e}_{j}}(0) - \hat{\rho}_{-\overrightarrow{e}_{j}}(0) \right]$$

State aware network : Time evolution

Machine Learning Quantum Matter

$\phi[\hat{\rho}] = e^{\Delta t D} (\hat{U} \hat{\rho} \hat{U}^{\dagger})$

- * \hat{U} : Unitary operation(projection operators/gate operators)
- * *D* : Dissipative part from the error model employed

E.g. for bit flip: $\sum_{j} (\hat{\sigma}_{x} \hat{\rho} \hat{\sigma}_{x} - \hat{\rho})$ $D_{BF}\hat{\rho} =$ *T_{decay}*

July 5th, 2021

State aware network : Recoverable Quantum Information

State aware network : Recoverable Quantum Information

State aware network : Reward Function

Return function(based on Rewards)

State $\rho(t + \delta t)$

State aware network

dissipation model

Machine Learning Quantum Matter

Action : policy π Measurement/Gate Agent Operation

Environment

Dissipation based on this action

Recurrent Network

- * Applied in experiments
- Receives measurement results, most recent action
- * Trained using supervised learning
- * Training data: input and policy for each time step in each trajectory
- Memory

Learns encoding and adaptive detection

After 160 epochs

(Mostly) converged

Machine Learning Quantum Matter

20

Learns encoding and adaptive detection

Learns encoding and adaptive detection

z meas. with result: = 0

Error model: $\sum_{i} (\hat{\sigma}_{x} \hat{\rho} \hat{\sigma}_{x} - \hat{\rho})$ $\partial \hat{\rho}$ ∂t *T*_{decay} Full connectivity!

Discovers feedback strategies based on available resources

- A)

Machine Learning Quantum Matter

CNOT gates only available between nearest neighbours; single measurement location.

B) CNOT gates only available between nearest neighbours; every qubit can be measured

C) Ring like connectivity for CNOTs; measurement on first qubit

Discovers feedback strategies based on available resources

Different connectivities

 T_{eff} extracted from decay of R_Q after 200 steps

Machine Learning Quantum Matter

 $T_{dec} = 1200$ is the single qubit decoherence time (in units of gate time that defines the time step)

Discovers feedback strategies based on available resources

Machine Learning Quantum Matter

July 5th, 2021

- * QEC from scratch
- * Detection and recovery sequences for diverse settings
- * Trained neural networks can be applied to experiments
- * This approach can be applied to diverse noises/errors
- * RL is a flexible and general tool which can be used for exploring problems requiring feedback based control in physics.

Machine Learning Quantum Matter

Thank You!

References

- Reinforcement Learning with neural networks for quantum feedback; Thomas Fösel, Petru Tighineanu, Talitha Weiss, and Florian Marquardt; Phys. Rev. X
- Reinforcement Learning, second edition: An Introduction (Adaptive Computation and Machine Learning series) (2. Aufl.); Sutton, R. S. & Barto, A. G. (2018). Bradford Books.
- * Lectures on Reinforcement Learning ; David Silver

- https://oxfordre.com/physics/view/10.1093/acrefore *
- https://en.wikipedia.org/wiki/Controlled_NOT_gate
- <u>https://quantumcomputing.stackexchange.com/three-qubit-bit-flip-code</u>
- https://qpiai.tech/quantum-error-correction/ *
- https://www.kdnuggets.com/5-things-reinforcement-learning.html
- https://www.analyticsvidhya.com/introduction-deep-q-learning-python/
- https://mpl.mpg.de/2019_Machine_Learning/
- https://logosconcarne.com/2021/03/15/qm-101-bloch-sphere/
- https://colah.github.io/posts/2015-08-Understanding-LSTMs/ \checkmark

Machine Learning Quantum Matter

Figures

