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Sources of error and why we need correction

Environment

* Huge registers
* Multiple gates

* High Speed >> Faster error
propagation

Technological
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Classical error correction Fxtension to QEC...?!

* N-BIT REPETITION CODE

Exploiting redundancy '
0 9 000 9 001 @ i
R 111 e 110 ‘

Error detection by majority rule
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Conceptual setting of a QEC code
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CNOT gate
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3-(Qubit bit flip code

* Idea : Distribute logical information (an arbitrary quantum state) over entangled state of three qubits.

Encoding circuit
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Indirect measurement

Input state Ancillar | Measurement
00) 0) 1
01) 1) -1

Vi) 10) 1) N
TR
- * 1: Even parity —>

‘0) ah M., parallel orientation

# -1: Odd parity —> anti-
parallel orientation
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Correction

encode noisy channel
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Syndrome Correction

Machine Learning Quantum Matter July 5, 2021



Fails for more than one error!
Fails for phase flip errors!
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Setting

olicy 7T
Agent —
state reward -
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Deep )

Q Table
State-Action

f

+ Neural network used to
approximate the Q-value
function

QIO |ICO|C|O|O|O0 |00

Q Learning

“ The state is given as input
and the Q-value of all
possible actions is
generated as output

Deep Q Learning
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Policy Gradient

00 = a'V,J(0)
V S, d
V‘gﬂ'g(s, Cl) — 71"9(5', CZ)M
ﬂH(Sa Cl)
= 1y(s,a) Vologmy(s, a)

+ @ : networks weights and biases.

+ J : Objective function

+ o : Learning rate parameter

* 1, : Policy
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Objective Functon

# Starting in state s ~ d(s)

* Terminating after one time-step with reward r
J(0) = En, [1]

= Z d(s) Z mo(s, a)Rs. 2

seS acA
Ved(0) = Z d(s) Z mo(s,a)Vglog mg(s, a)Rs.a
s€S ac A

= E,, [Vologmy(s, a)r]

* Expected return maximised by applying the policy gradient update rule:
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PHYSICAL REVIEW X 8, 031084 (2018)

Reinforcement Learning with Neural Networks for Quantum Feedback

Thomas Fosel, Petru Tighineanu, and Talitha Weiss
Max Planck Institute for the Science of Light, Staudtstrafse 2, 91058 Erlangen, Germany

Florian Marquardt

Max Planck Institute for the Science of Light, Staudtstrafse 2, 91058 Erlangen, Germany
and Physics Department, University of Erlangen-Nuremberg, Staudtstrafie 5, 91058 Erlangen, Germany

® (Received 23 April 2018; revised manuscript received 12 June 2018; published 27 September 2018)

Machine learning with artificial neural networks 1s revolutionizing science. The most advanced
challenges require discovering answers autonomously. In the domain of reinforcement learning, control
strategies are improved according to a reward function. The power of neural-network-based reinforcement
learning has been highlighted by spectacular recent successes such as playing Go, but its benefits for
physics are yet to be demonstrated. Here, we show how a network-based “agent” can discover complete
quantum-error-correction strategies, protecting a collection of qubits against noise. These strategies require
feedback adapted to measurement outcomes. Finding them from scratch without human guidance and
tailored to different hardware resources 1s a formidable challenge due to the combinatorially large search
space. To solve this challenge, we develop two ideas: two-stage learning with teacher and student networks
and a reward quantifying the capability to recover the quantum information stored in a multiqubit system.
Beyond its immediate impact on quantum computation, our work more generally demonstrates the promise
of neural-network-based reinforcement learning in physics.

DOI: 10.1103/PhysRevX.8.031084 Subject Areas: Computational Physics,
Interdisciplinary Physics,
Quantum Information
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RL setting of the QEC problem

RL environment

Task: To preserve an arbitrary quantum state initially stored in qubits
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Why RL?

+ Autonomous!

* No requirement of a model ! O
* Feedback based control optimal for QEC O

develop own strategies
(no teacher)
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Failure of RL

Experiments

State-aware network

Quantum states
(representing the map
for evolution of arbitrary
iInput state up to time 1)



T'wo stage learning

State-aware network Recurrent network

Quantum states
(representing the map

for evolution of arbitrary Action probabilities
input state up to time 1)

"~ Measurement results
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State aware network : Input

Po= 7 [ﬂ—>(0) +p_ *(0)]
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State aware network : Time evolution

* policy 7T

Plpl = e P(UpUT)

Umtary
operatlon( projection
operators/ gate operators)

« D : Dissipative part from the

A ¢lp o(%;)] error model employed
[r) =
P triglpot)]} e for bit flio
. PLopy(t;)] (0.6, = D)
5 [r) = DBF N =
’0( f) t}"{ ¢[ﬁ0(tz)] } g Tdecay
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State aware network : Recoverable QQuantum Information

Remaining intormation im evolved state?

Success in distinguishing antipodal logical states?

Recoverable Quantum Information

1
7 0-11)

1)

|+1)

1 .
710 +iI) Time evolved states

1)
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State aware network : Recoverable QQuantum Information

Remaining intormation im evolved state?

Success in distinguishing antipodal logical states?

Recoverable Quantum Information

7300 -i1) %(w)—m)
|-1) =)
|+) | +i)
1
S 1 ) .
5 (0)+11) 510 +i 1) Time evolved states
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State aware network : Reward Function

) 40 if Ry(t+Af) >0,

0 —P if Rp(t) #0
ARo(t+At) =0,
O(l) +?) lfRQ(t) =0

Recoverable Quantum

State (i + o) Information
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State aware network

4* policy 7T
4

Recoverable Quantum Information

State p(7 + o1)
determined using this
dissipation model

Dissipation based on
this action
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Recurrent Network

* Applied in experiments @

+ Receives measurement results, most recent
action

* Trained using supervised learning

* Training data: input and policy for each time
Recurrent network step in each trajectory

Measurement results

| o * Memory
Action probabilities @

Machine Learning Quantum Matter July 5, 2021



Machine Learning Quantum Matter July 57, 2021



Learns encoding and adaptive detection

Error model:

A A A

ZJ (prdx R ﬁ)
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Learns encoding and adaptive detection

Error model:
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Learns encoding and adaptive detection

Error model:

A A A

Zj (prdx o ﬁ)

Full connectivity!

O Red: after 60 epochs
I Blue: after 160 epochs

TI m e Ste p 200 Green: Mostly converged

Dashed: averaged over many

trajectories
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Learns encoding and adaptive detection

Error model:

A A A

Zj (prdx o ﬁ)

Full connectivity!
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Discovers feedback strategies based on available resources

A) CNOT gates only available between nearest neighbours; single measurement location.
B) CNOT gates only available between nearest neighbours; every qubit can be measured

C) Ring like connectivity for CNOTs; measurement on first qubit
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Discovers feedback strategies based on available resources

20 -

| Telff / Tdecl

Different connectivities

T,..=1200 is the single qubit decoherence time (in units of gate time that defines the time step)

I, ;extracted tfrom decay of R_Q after 200 steps
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Discovers feedback strategies based on available resources
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Summary

+ QEC from scratch

* Detection and recovery sequences for diverse settings
* Trained neural networks can be applied to experiments
* This approach can be applied to diverse noises/errors

* RLis a flexible and general tool which can be used for exploring problems
requiring feedback based control in physics.
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