Reinforcement learning

IN DIFFERENT PHASES OF QUANTUM CONTROL
BY JASON BERGELT

Content

* Introduction
= What do we want to achieve?

= Why do we use reinforcement learning?

* Finite Markov Decision Processes
= Formalism
= Optimization
= Exploration-exploitation dilemma

* Qubit controlling
¢ Different phases of Quantum control

Introduction

What do we want to achieve?

* Main goal:
* Control quantum states in large quantum many-body systems
* In our case: control single qubit
» ,Normal“ bit has two states 0 & 1
» in contrast our qubit has states |[¥) = a |0) + b|1)

» Goal: prepare a specific target state

* Challenges:

* Lack of limited theoretical understanding

* Complexity of simulating
» experimental systems are uncontrollable
» No finite-duration protocol to prepare the desire state
» Adiabatic limit for non equilibrium systems often does not exist

Why do we use reinforcement learning?

* Provides deep insight into nonequilibrium quantum dynamics
» without knowledge of any model

* Discovers a stable suboptimal protocol
» rivals optimal solutions in performance

» But: stable to local perturbation

* Well suited to work with experimental data
* Does not require the knowledge of the local gradient of control landscape

»Advantage in controlling for difficult models (difficuity due to disorder or dislocation)

’_l Agent }
state reward action

Sr Rr Ar

< Rr+1 (
| _S.. | Environment

Finite Markov Decision Processes
(MDP)

"I A |

ent
- Agent |

state reward

action
A,

Agent vs Environment - Erromment J+——

AGENT ENVIRONMENT
* the “learner” * anything the agent can’t change
» can be anything that wants to learn » agent maybe knows everything about the

environment

» But still faces difficult reinforcement learning task

= Example: Rubik’s Cube
§\ w "ERS Wi o AR
Addd diii
@), 6 |
Vs ‘\ ﬁ = 4‘
f ' YU i ‘
A8 AR AAAA
BoawpahE

Agent-Environment boundary = limit of agent's absolute control

[
&

™ Agent II
state reward action

SI Rt Ar

dynamics - erronment J——

* set by the environment

* the dynamicsp: S X R X S X A - [0,1]
* p(s',rls,a) =Pr{S; =s' R, =71 |S;_1 = 5,41 = a}
7 NerestrerP(s’,r|s,a) =1 foralls € S,a € A(s)

* |later: ,
. Environment - .
* Qubit » Schrodinger equation

» Dynamics become deterministic
» Probability = delta-distribution

™| Agent II
state reward action

SI Rt Ar

State S pa Ce s 1;:1 r Environment]47

* State = “anything that might be useful information to the agent”

* includes information about the past agent-environment interaction

* At each time step t the agent chooses an action A; based on state S;
» so called: Markov property

* Received reward R, and new state S;, 4 ¢ |
» Dependent on preceding state and action ‘

» Via discrete probability distribution i

™| Agent ||
state reward action

SI Rt Ar

ACt I O n S p a Ce }4 :;:1 r Environment]47

* action = “Anything the agent can do to achieve our result”
» example:

» moving chess pieces

» moving balancing cart

» and more

iy | ST I R [T = T I u 1]
= | ST R m m -1

>AentI

state reward

S| R

- Agent |

Policy T(als)

. | Environment]47

action
A

* policy = “probability of each possible action from a given state”

* probability to choose an action A; = a if in state §; = s attimet
» probability distribution over a € A(s) foreachs € §

optimized due to agent's experience

> |
Agent
.| A i
state reward action
St Rt A,
R
Reward space @ = Envronment Jo——
* reward = “our way to tell the agent what we want” N TS
o r | F | r %,1
5 RN

reward R; € R

* agent wants to maximize the reward
» Important:

» provide rewards in such a way they achieve our goals

» don’t give rewards for subgoals

High reward

Low reward

24: 06

ROBORACE’

>Aent|

- Agent |

state reward

E p I SO d eS) : r Environment]47

action
A

EPISODIC TASKS: CONTINUING TASKS:

* every episode begins independently T =
* every episode ends in the same terminal state * return could be infinite (see nextsiide)

* distinguish nonterminal state S from terminal > use discounting return

state ST
= example:

> example:

1

Unified notation:
> St 4 St,i
» State representation at time t of episode i

™| Agent ||
state reward action

St Rt Ar

Ret U rn Gt ;: Environment]47

~

4

EPISODIC TASKS CONTINUING TASKS

* Remember: agent receives rewards after each “time” step ° sum discounted rewards:
» noted as Ryyq, Rei2, Ry, o » Gt = Reyy +YRey2 + ¥ Repz + = Xpio V¥ Reypesn

: — = Rey1 + VG
* wish to maximize the expected return G,
* Simplest variation: * 0 <y < 1:called discount rate

. > d ived k ti i th only y*71 ti
> Gt = Rt+1 + Rt+2 + + RT (T flnal Step) rewardads receive Imes IS Wor onyy mes

Unified notation:
* Add special absorbing state
» Transition only on itself
» RewardR; =0

* Gt = Ve VIR

Optimization

| Agent :
state reward action

St Rt A:

Value tfunctions &l errorment Jo——

* tells us the possible future rewards
* Estimated from experience

* defined with respect to policies
» used to determine policy

* two kinds of value functions
» state-value function V. (s)
» action-value function g, (s, a)

State-value function v (s)

>AentI

state reward

- gent |

.. | Environment]47

action
A,

* value function of state s under policy
*Vr(S) = Ex(GelS: = 5) = En[Xk=o Vth+k+1|St = 5]

* [E[:] is the expected value of a random variable
* By given policy m and time step t

* value of terminal state is always zero

* Problem:

* Separate average for every state

» Therefore:

U (s) = EglGilS: = s] = Xam(als) Xy . 0(s',rls, a)[r + v vy (s7)]
» So called Bellman equation

"I A |

state

Action-value function g (s, a)

reward
R,

ent
9o

1 {
Environment]4—

* value function of an action a in state s under policy
“qr(s,a) = Eg[G|S: = 5,4; = a] = Ep[Xi=o)/th+k+1|St =s,A; = al

» expected return starting in s, taking action a and afterwards policy

» is the basis of the policy

action
A,

™| Agent ||

state reward action

SI Rt AI

Optimal solutions -l erromment |

* 1 is better than 7', if expected return is greater or equal to 7’
s =>1if v(s) = v(s)

« Optimal state-value function: * Optimal action-value function:

v,.(s) = mélx(Vn(s)) foralls €S q.(s,a) = max qz(s,a)

» optimal policy is:
{n*(als) = 1, ifargmax Q(s|a)
m.(als) =0, else

™| Agent ||
state reward action

St Rt Ar

O ptl m |Zat|0 n ;: Environment]47

* solve Bellman equation
» vp(s) = EgGelSy = s] = Zam(als) Xy (s, 7ls, a)[r + v vy (s7)]
» Find optimal g-function

~

4

» Problem:

» Rarely directly useful
» Solution relies on three assumptions
1. Know the dynamics

2. Enough computational recourses | rarely all true all the time

3. Markov property

* critical aspects for alternatives
* Computational power

* Availability of memory

> |
Agent
» A9 |

action

St Rt Ar

Optimization alternatives 2 Envionmont J+——

Goal: Find “perfect” Q. (s, a)

TASKS WITH SMALL, FINITE SETS TASKS WITH CONTINUOUS STATES
* approximations using arrays or tables * use more compact parameterized function
» “tabular case” representation

» approximating optimal behavior
» Dismiss states with a low probability
» Approximating optimal policies

» More effort into learning good actions in frequently
encountered states

» Less effort into rarely encountered states

™ Agent ||
state| |reward action
s, | |R, A
Watkins Q-learning i Ervronment Jo——

* use: action-value function Q(s,a)

* remember: Bellman equation ?a'ble
> vTL'(S) =]ETL'[thst — S] = Zaﬂ(als) Zs’,rp(slrrlsr a)[?‘ + y UTL' (S’)] e n 4m
. . . s; 0 0 0
* Define: Q*(s,a) = Q™ (s,a) for all s,a
* steps: | s Qn(s, @)
* Observe current state s, e
* Select and perform a,, -
Sm O 0 0

Observe subsequent state s’
Receive immediate payoff 7;,
update its Q,,_1 values

Q-updating rule:
0.(s,a) = (1 —a,)Qu_1(s,a) + ay[r, + yV,_1(sH)] if s=s, a=an,
s Qn-1(s,a) otherwise

™ Agent ll
state| |reward action
s, | IR, A
Learning rate a 21 Erronment Jo——

* Q-updating rule:
° Q(sya;) « Q(sya) + afr; + mC?X[Q(Siﬂ;a) — Q(si,a;)]]

a € (0,1)
» a = 1:very fast learning

» Necessary to slow down if Bellman error §; = r; + max Q(s;;1,a) — Q(s;, a;)
a

» a = 0: very slow learning

™| Agent II
state reward action

S, Rr Ar

Exploration-exploitation dilemma 2] Envronment Jo——

* necessary to avoid getting stuck in the in a local maximum of reward space
» therefore, explore large parts of the RL state space

=~
~

» no exploration = agent repeats a given policy

» Unclear if better policy exists

* if stuck in local maximum:
» run multiple times with random starting conditions

» Post select outcome

» RL solution nearly perfect
» Fidelity close to true global optimal fidelity

* RLindependent of initial conditions
» but huge drop in fidelity if phases different

1. Exploratory training stage

* exploits the current Q function to explore

* Amount of exploration set by “learning” temperature Sy,
» PBr; = 0 :random action

» PBr; = o : greedy action
» Respectively to current estimated of Q function
» possible to determine policy:

eBrLA(s,2)

m(als) =

Za, eﬂRLQ(Sra,)

Number of episodes increases > Usage of Sz decreases linearly

2. Replay training stage

* replay best encountered protocol

» lasts 40 episodes

» take action according to softmax probability distribution based on values of Q-function
» at each time step:

» Look at Q(s,:) corresponding to all available actions
» Compute P(a)~ exp(Br.Q(s,a))

» agent will be biased toward the best encountered protocol
» Improving until good fidelity

Qubit controlling

Quantum agent and environment

* Environment = {i d;|¥(t)) = H(t)|W¥(t)), |¥(0)) = |¥;)

H[hx(t)] = —57 — hy(t)S*
* is the Hamiltonian

» Time dependence defined by the magnetic field h, (t)

> initial state |¥;) at hy = —2
» target state |W¥,) at h, = 2 } Ground state

*agent constructs piecewise-constant protocols of duration T

T

» agent chooses a drive protocol strength h, (t) at each time t = j 6t, withj = {0,1, ’5}

Restrictions

* no access to infinite control fields
» restrict to field h,(t) € {—4,4}

» use equal spaced tilings along the entire range of h,.(t) € [—4,4]

* restrict the RL algorithm to the family of bang-bang protocols
» protocols that switch abruptly between two states

Fy(T

1.000

="
e
—_
o
— &
21]
poll
n
o
o

State space §

* S={s=[th,)]}
»All tuples [t, h, (t)] of time t and corresponding magnetic field h,.(t)

* model free !
* Discrete states

» agent avoids difficulties produced by theoretical notions
» ‘time’ t shows us where episodes ends

- even though only one control field available protocols grows exponentially with §¢t ™1

Action space #

* consists of all jumps §h, in the protocol h,.(t)

» protocols constructed as piece-wise constant functions

» restrict the available actions in every state s
> h,(t) € {—4,4}

Reward space 2

* real number in the interval [0,1]

* rewards given at the end of each episode to:

0
sr(t) = {Fh(T) = (W, |¥(T))|*

» we are not interested in the system during its evolution

» all that matters is to maximize the final fidelity F;, (T)

» For fixed protocol duration T use the infidelity I;,(T) = 1 — F,(T)
»Global minimum corresponds to optimal driving protocol

Protocol construction algorithm

* algorithm: = example:

* start in the initial RL state “Sg=(t=0h, =—-4)
* Take action “a=06h, =8

* next RL state =s; = (6t,+4)

» initial g.s evolved forward in time "ty =0 -ty =0t

" [W(St)) = e HIn=HO g
»Compute reward and update Q function

»Repeatuntilt=T

So > dg 27Ty =Sy >0 2T =5 =" 2 SNy

The 3 phases of reinforcement learning

0.0
0.0 05 1.0 15 20 25 3.0 35
T. T TQSL

The correlator

* total protocol duration T = fixed

* the infidelity: h,(t) — I;,(T) = 1 — F;(T)
» global minimum is the optimal driving protocol

q(1) = =3 {h,(j60) — RGO}

16 Nt

1

° where h,(t) = MZN“’“I h%(t)

* g(T) = correlator between the infidelity minima
« If {hg ()}, re“l are all uncorrelated
> hy(t) =0, thus q(T)=1
* Only one minimum
> hy(t) = hy(t) and q(T) = 0

(iii)

The control problem |

lstphase @ T < T, = 0.6:

* called: over constrained phase

111 | |
* unique optimal protocol
0.0 05 1.0 15 20 25 30 35 » q(T) = 0——infidelity landscape convex
T, T TgsL > fidelity can be limited
(0) *T. - 0for |h,| - o
4m
Fu(T) = 0.331
(i) -
= 0 »Precession speed towards equator dependent
—2 on maximum possible allowed field strength

0.0 01 02 03 04 05

2 1)
Sed™ ! (£=0.00)=0.00_"F}(t=0.00)=0.200 Th a

overcon-
strained
ohase:

The control problem Il

2ndphase @ T, <T < Tysy:

* called: glassy phase

* infidelity landscape won’t form a minima
corresponding to protocols of unit fidelity

e T
SEa=1(£=0.00)=0.00 "F}(t=0.00)=0.200

The

glassy
ohase:

The control problem Il

3rdphase @ T > Tyg, = 2.4:
* called: controllable phase

* infinitely many protocols constructable
» all prepare target state with unit fidelity

L=t T2
Seit (t=0.00)=0.00 F},(t=0.00)=0.200 The

control-
able
ohase:

Summary

FINITE MARKOV DECISION PROCESS QUBIT CONTROLLING
1.0
™ Agent 08
ﬁ

state reward action 0.6

Sz Rt A,
R [0.4

<o Environment]4—

0.2

0.0
H . HH H : 0.0 05 10 1.5 20 25 30 35
Policy: probability of each possible action from T T Tos Alo

a given state

3 phases: e e
Value function: estimates future rewards > QOver constrained phase .
depending on experience and policy - Glassy phase

Optimization: Watkins Q-learning > Controllable phase L M]F I

ha(t)
EL,LGN,. Ll oo
2 : 1 B
=

H 1

Bibliography

= Reinforcement Learning in Different Phases of Quantum Control; Marin Bukov, Alexandre G. R. Day, Dries Sels, Phillip Weinberg, Anatoli Polkovnikov and Pankaj Mehta

= Reinforcement Learning, second edition: An Introduction (Adaptive Computation and Machine Learning series) (2. Aufl.); Sutton, R. S. & Barto, A. G. (2018).
Bradford Books.

= Technical Note: Q-Learning; Christopher J.C.H. Watkins & Peter Dayan, 1992 Kluwer Academic Publishers, Boston.

Pictures

https://www.freeimages.com/de/photo/rubix-cube-solved-1196475

https://www.chess-international.com/?p=754,

https://de.wikipedia.org/wiki/Schach

https://www.spielezar.ch/blog/spielregeln

https://medium.com/@tuzzer/cart-pole-balancing-with-g-learning-b54c6068d947

https://de.freepik.com/fotos-vektoren-kostenlos/pack-robot

https://www.youtube.com/watch?v=x4fdUx6d4QM

https://www.youtube.com/watch?v=QtVbch-02Fs

https://www.freeimages.com/de/photo/rubix-cube-solved-1196475
https://www.chess-international.com/?p=754
https://de.wikipedia.org/wiki/Schach
https://www.spielezar.ch/blog/spielregeln
https://medium.com/@tuzzer/cart-pole-balancing-with-q-learning-b54c6068d947
https://de.freepik.com/fotos-vektoren-kostenlos/pack-robot
https://www.youtube.com/watch?v=x4fdUx6d4QM
https://www.youtube.com/watch?v=QtVbch-02Fs

