## Reinforcement learning

IN DIFFERENT PHASES OF QUANTUM CONTROL

BY JASON BERGELT

#### Content

- Introduction
  - What do we want to achieve?
  - Why do we use reinforcement learning?
- Finite Markov Decision Processes
  - Formalism
  - Optimization
  - Exploration-exploitation dilemma
- Qubit controlling
  - Different phases of Quantum control

## Introduction

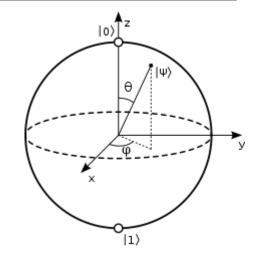
#### What do we want to achieve?

#### • <u>Main goal:</u>

- Control quantum states in large quantum many-body systems
  - In our case: control single qubit
    - > "Normal" bit has two states 0 & 1
    - > in contrast our qubit has states  $|\Psi\rangle = a |0\rangle + b|1\rangle$
    - **Goal:** prepare a specific target state

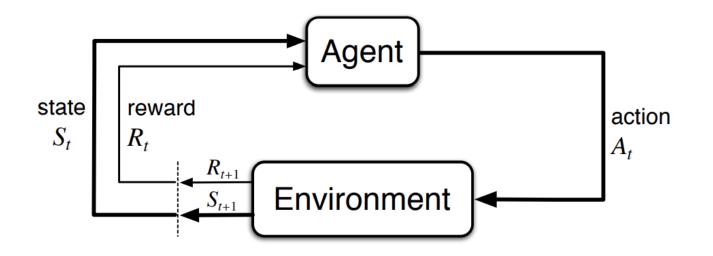
#### <u>Challenges:</u>

- Lack of limited theoretical understanding
- Complexity of simulating
  - > experimental systems are uncontrollable
    - > No finite-duration protocol to prepare the desire state
    - > Adiabatic limit for non equilibrium systems often does not exist

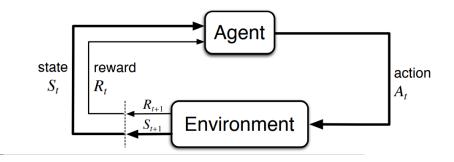


## Why do we use reinforcement learning?

- Provides deep insight into nonequilibrium quantum dynamics
  - without knowledge of any model
- Discovers a stable suboptimal protocol
  - rivals optimal solutions in performance
    - **But:** stable to local perturbation
- Well suited to work with experimental data
  - Does not require the knowledge of the local gradient of control landscape
  - >Advantage in controlling for difficult models (difficulty due to disorder or dislocation)



# Finite Markov Decision Processes (MDP)



## Agent vs Environment

#### <u>AGENT</u>

- the "learner"
  - can be anything that wants to learn





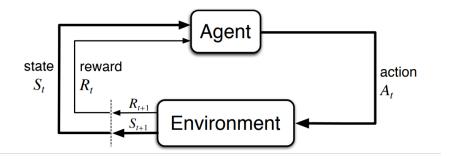
#### **ENVIRONMENT**

- anything the agent can't change
  - agent maybe knows everything about the environment
    - But still faces difficult reinforcement learning task
      - Example: Rubik's Cube





Agent-Environment boundary = limit of agent's absolute control



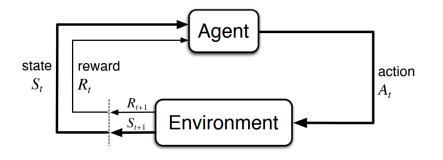
#### dynamics

- set by the environment
- the dynamics  $p: S \times R \times S \times A \rightarrow [0,1]$ 
  - $p(s', r | s, a) \coloneqq \Pr\{S_t = s', R_t = r | S_{t-1} = s, A_{t-1} = a\}$ 
    - $\succ \sum_{s' \in S} \sum_{r \in R} p(s', r | s, a) = 1 \text{ for all } s \in S, a \in A(s)$

#### • later:

Environment Schrödinger equation • Qubit

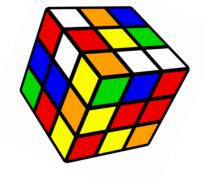
- > Dynamics become deterministic
  - Probability = delta-distribution



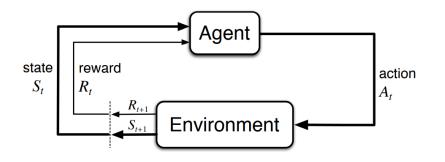
#### State space *S*

- State = "anything that might be useful information to the agent"
- includes information about the past agent-environment interaction

- At each time step t the agent chooses an action  $A_t$  based on state  $S_t$ 
  - > so called: Markov property
  - Received reward  $R_{t+1}$  and new state  $S_{t+1}$ 
    - Dependent on preceding state and action
      - Via discrete probability distribution

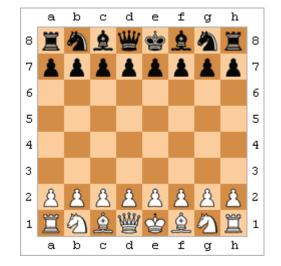






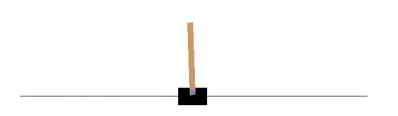
Action space *A* 

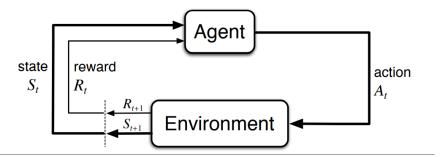
- action = "Anything the agent can do to achieve our result"
  - > example:
    - > moving chess pieces
    - > moving balancing cart
    - and more







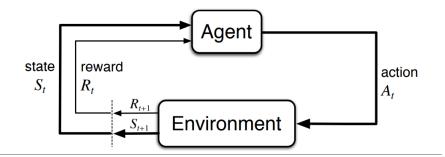




Policy  $\pi(a|s)$ 

- policy = "probability of each possible action from a given state"
- probability to choose an action  $A_t = a$  if in state  $S_t = s$  at time t
  - > probability distribution over  $a \in A(s)$  for each  $s \in S$

optimized due to agent's experience



#### Reward space $\boldsymbol{\mathcal{R}}$

reward = "our way to tell the agent what we want"

• reward  $R_t \in \mathbb{R}$ 

- agent wants to maximize the reward
  - Important:
    - > provide rewards in such a way they achieve our goals
    - don't give rewards for subgoals



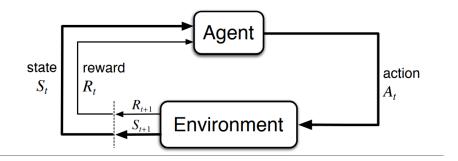


## High reward



#### Low reward





### Episodes

**EPISODIC TASKS:** 

- every episode begins independently
- every episode ends in the same terminal state return could be infinite (see next slide)
- distinguish nonterminal state *S* from terminal state S<sup>+</sup>

• example:



**CONTINUING TASKS:** 

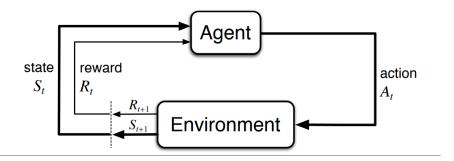
•  $T = \infty$ 

- use discounting return
- example:

**Unified notation:** 

$$\succ S_t \rightarrow S_{t,i}$$

State representation at time t of episode i



## Return G<sub>t</sub>

#### **EPISODIC TASKS**

#### Remember: agent receives rewards after each "time" step ➢ noted as R<sub>t+1</sub>, R<sub>t+2</sub>, R<sub>t+3</sub>, ....

- wish to maximize the expected return  $G_t$ 
  - Simplest variation:

 $\succ G_t \equiv R_{t+1} + R_{t+2} + \dots + R_T$  (T: final step)

#### CONTINUING TASKS

- sum discounted rewards: •  $G_t \equiv R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$ 
  - $= R_{t+1} + \gamma G_{t+1}$
- 0 ≤ γ ≤ 1 : called discount rate
   rewards received k times is worth only γ<sup>k-1</sup> times

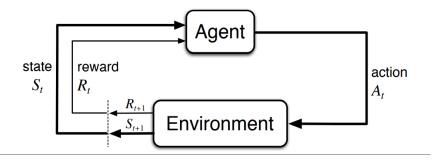
#### **Unified notation:**

- Add special *absorbing state* 
  - Transition only on itself

$$\blacktriangleright$$
 Reward  $R_t = 0$ 

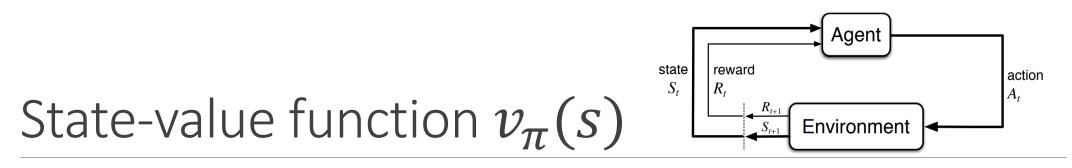
• 
$$G_t \equiv \sum_{k=t+1}^T \gamma^{k-t-1} R_k$$

## Optimization



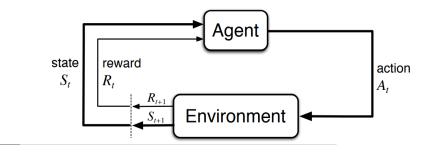
## Value functions

- tells us the possible future rewards
  - Estimated from experience
- defined with respect to policies
  - used to determine policy
- two kinds of value functions
  - $\succ$  state-value function  $V_{\pi}(s)$
  - $\succ$  action-value function  $q_{\pi}(s, a)$



- value function of state s under policy  $\pi$
- $\mathbf{v}_{\pi}(\mathbf{s}) \equiv \mathbb{E}_{\pi}(G_t | S_t = \mathbf{s}) = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = \mathbf{s}]$
- $\mathbb{E}_{\pi}[\cdot]$  is the expected value of a random variable
  - By given policy  $\pi$  and time step t
- value of terminal state is always zero
- Problem:
  - Separate average for every state
  - > Therefore:

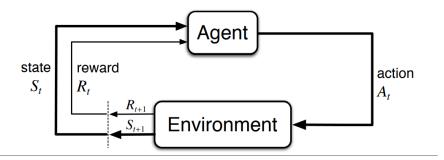
 $v_{\pi}(s) \equiv \mathbb{E}_{\pi}[G_t|S_t = s] = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$ > So called *Bellman equation* 



Action-value function  $q_{\pi}(s, a)$ 

- value function of an action a in state s under policy  $\pi$
- $q_{\pi}(s, a) \equiv \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a]$
- $\succ$  expected return starting in s, taking action a and afterwards policy  $\pi$

 $\succ$  is the basis of the policy



## Optimal solutions

•  $\pi$  is better than  $\pi'$ , if expected return is greater or equal to  $\pi' \ge \pi \ge \pi'$  if  $v_{\pi}(s) \ge v_{\pi'}(s)$ 

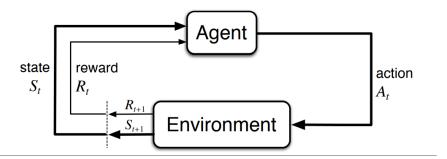
• Optimal state-value function:

• Optimal action-value function:

 $v_*(s) = \max_{\pi} (V_{\pi}(s))$  for all  $s \in S$ 

 $q_*(s,a) \equiv \max_{\pi} q_{\pi}(s,a)$ 

> optimal policy is:  $\begin{cases}
\pi_*(a|s) = 1, \text{ if } \arg\max_{a'} Q(s|a) \\
\pi_*(a|s) = 0, else
\end{cases}$ 



## Optimization

solve Bellman equation

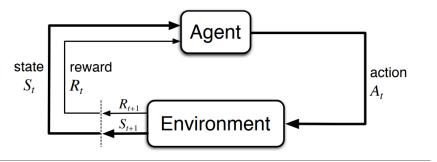
$$\succ v_{\pi}(s) \equiv \mathbb{E}_{\pi}[G_t|S_t = s] = \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$$

Find optimal q-function

#### **>** Problem:

- Rarely directly useful
- Solution relies on three assumptions
  - 1. Know the dynamics
  - 2. Enough computational recourses
  - 3. Markov property
- critical aspects for alternatives
  - Computational power
  - Availability of memory

rarely all true all the time



#### Optimization alternatives

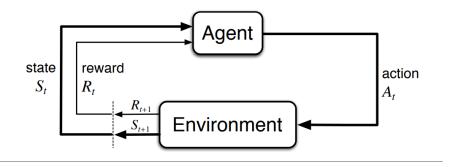
Goal: Find "perfect"  $Q_{\pi}(s, a)$ 

#### TASKS WITH SMALL, FINITE SETS

- approximations using arrays or tables
  - "tabular case"

#### TASKS WITH CONTINUOUS STATES

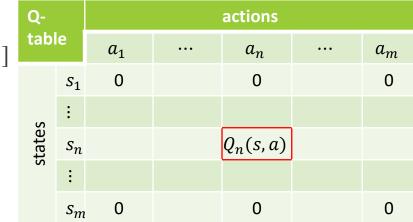
- use more compact parameterized function representation
  - > approximating optimal behavior
    - Dismiss states with a low probability
  - > Approximating optimal policies
    - More effort into learning good actions in frequently encountered states
    - Less effort into rarely encountered states

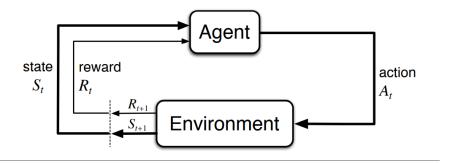


## Watkins Q-learning

- use: action-value function Q(s,a)
- remember: Bellman equation  $\succ v_{\pi}(s) \equiv \mathbb{E}_{\pi}[G_t|S_t = s] = \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$
- Define:  $Q^*(s, a) \equiv Q^{\pi^*}(s, a)$  for all s,a
- steps:
  - Observe current state *s*<sub>n</sub>
  - Select and perform  $a_n$
  - Observe subsequent state s'
  - Receive immediate payoff  $r_n$
  - update its  $Q_{n-1}$  values

$$Q_{n}(s,a) = \begin{cases} (1 - \alpha_{n})Q_{n-1}(s,a) + \alpha_{n}[r_{n} + \gamma V_{n-1}(s'_{n})] & \text{if } s = s_{n}, a = a_{n} \\ Q_{n-1}(s,a) & \text{otherwise} \end{cases}$$



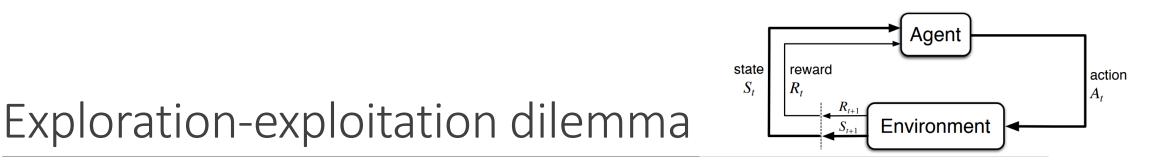


### Learning rate $\alpha$

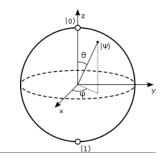
- Q-updating rule:
  - $Q(s_i, a_i) \leftarrow Q(s_i, a_i) + \alpha[r_i + \max_a[Q(s_{i+1}, a) Q(s_i, a_i)]]$
- $\alpha \in (0,1)$ 
  - $\geq \alpha \approx 1$ : very fast learning

> Necessary to slow down if Bellman error  $\delta_t = r_i + \max_a Q(s_{i+1}, a) - Q(s_i, a_i)$ 

 $> \alpha \approx 0$ : very slow learning



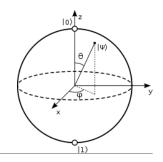
- necessary to avoid getting stuck in the in a local maximum of reward space
  - therefore, explore large parts of the RL state space
  - > no exploration = agent repeats a given policy
    - > Unclear if better policy exists
- if stuck in local maximum:
  - run multiple times with random starting conditions
    - Post select outcome
- > RL solution nearly perfect
  - Fidelity close to true global optimal fidelity
- RL independent of initial conditions
  - but huge drop in fidelity if phases different



## 1. Exploratory training stage

- exploits the current Q function to explore
- Amount of exploration set by "learning" temperature  $\beta_{RL}$ 
  - $\succ \beta_{RL} = 0$  : random action
  - $\succ \beta_{RL} = \infty$  : greedy action
  - Respectively to current estimated of Q function
  - possible to determine policy:

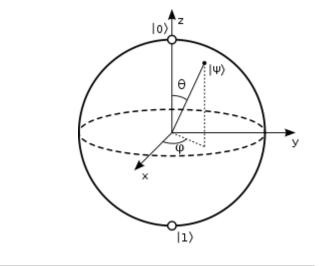
$$\pi(a|s) = \frac{e^{\beta_{RL}Q(s,a)}}{\sum_{a'} e^{\beta_{RL}Q(s,a')}}$$
Number of episodes increases Usage of  $\beta_{RL}$  decreases linearly



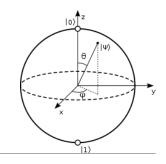
## 2. Replay training stage

- replay best encountered protocol
- lasts 40 episodes
- > take action according to softmax probability distribution based on values of Q-function
  - > at each time step:
    - > Look at Q(s,:) corresponding to all available actions
    - > Compute  $P(a) \sim \exp(\beta_{RL}Q(s, a))$

agent will be biased toward the best encountered protocol
 Improving until good fidelity



## Qubit controlling



#### Quantum agent and environment

• Environment =  $\{i \ \partial_t | \Psi(t) \rangle = H(t) | \Psi(t) \rangle, | \Psi(0) \rangle = | \Psi_i \rangle$ 

$$H[h_x(t)] = -S^z - h_x(t)S^x$$

• is the Hamiltonian

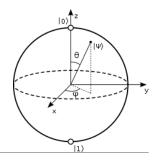
 $\rightarrow$  Time dependence defined by the magnetic field  $h_{\chi}(t)$ 

 $\succ$  initial state  $|\Psi_i\rangle$  at  $h_x = -2$ 

$$\succ$$
 target state  $|\Psi_*\rangle$  at  $h_x = 2$   $\leftarrow$  Ground state

agent constructs piecewise-constant protocols of duration T

> agent chooses a drive protocol strength  $h_{\chi}(t)$  at each time  $t = j \, \delta t$ , with  $j = \{0, 1, \dots, \frac{T}{\delta t}\}$ 

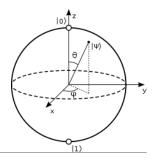


#### Restrictions

- no access to infinite control fields
  - → restrict to field  $h_{\chi}(t) \in \{-4,4\}$
  - → use equal spaced tilings along the entire range of  $h_x(t) \in [-4,4]$

restrict the RL algorithm to the family of bang-bang protocols
 protocols that switch abruptly between two states





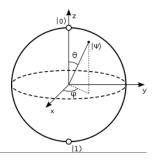
#### State space *S*

•  $S = \{s = [t, h_x(t)]\}$ 

> All tuples  $[t, h_x(t)]$  of time t and corresponding magnetic field  $h_x(t)$ 

- model free !
  - Discrete states
  - > agent avoids difficulties produced by theoretical notions
  - 'time' t shows us where episodes ends

• even though only one control field available protocols grows exponentially with  $\delta t^{-1}$ 

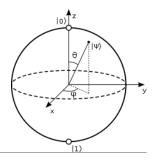


#### Action space *A*

• consists of all jumps  $\delta h_{\chi}$  in the protocol  $h_{\chi}(t)$ 

> protocols constructed as piece-wise constant functions

➢ restrict the available actions in every state s
>  $h_x(t) \in \{-4,4\}$ 



#### Reward space $\boldsymbol{\mathcal{R}}$

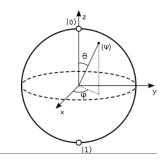
- real number in the interval [0,1]
- rewards given at the end of each episode to:

$$\succ r(t) = \begin{cases} 0\\ F_h(T) = |\langle \Psi_* | \Psi(T) \rangle|^2 \end{cases}$$

> we are not interested in the system during its evolution

> all that matters is to maximize the final fidelity  $F_h(T)$ 

For fixed protocol duration T use the infidelity  $I_h(T) = 1 - F_h(T)$ Global minimum corresponds to optimal driving protocol



## Protocol construction algorithm

- algorithm:
- start in the initial RL state
- Take action
- next RL state
- initial q.s evolved forward in time

example:

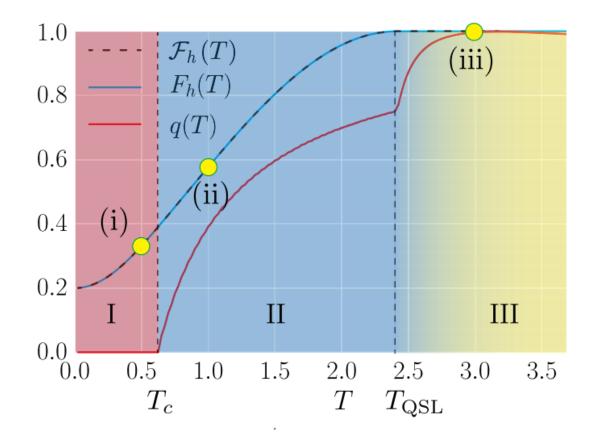
• 
$$s_0 = (t = 0, h_x = -4)$$
  
•  $a = \delta h_x = 8$   
•  $s_1 = (\delta t, +4)$   
•  $t_0 = 0 \rightarrow t_1 = \delta t$   
•  $|\Psi(\delta t)\rangle = e^{-i*H[h_x=4]\delta t}|\Psi_i\rangle$ 

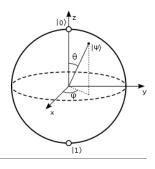
Compute reward and update Q function

Repeat until t = T

$$s_0 \rightarrow a_0 \rightarrow r_0 \rightarrow s_1 \rightarrow a_1 \rightarrow r_1 \rightarrow s_1 \rightarrow \cdots \rightarrow s_{N_T}$$

#### The 3 phases of reinforcement learning





## The correlator

- total protocol duration T = fixed
- the infidelity:  $h_x(t) \mapsto I_h(T) = 1 F_h(T)$

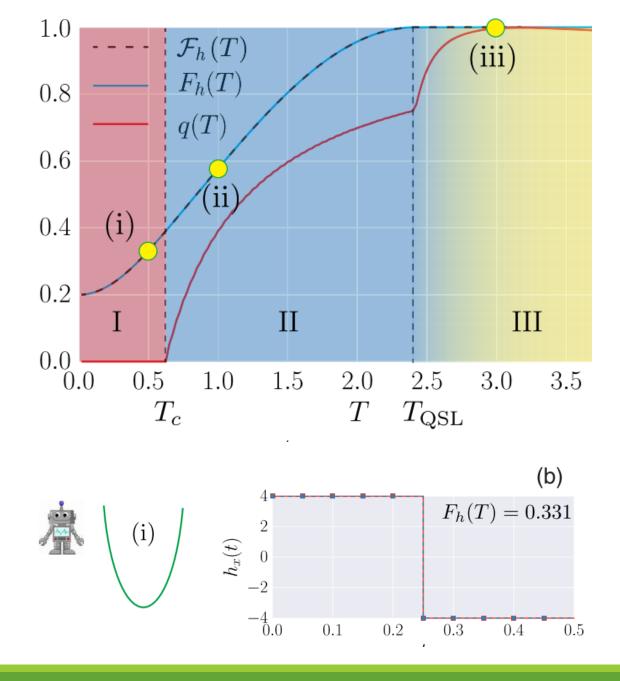
> global minimum is the optimal driving protocol

$$q(T) = \frac{1}{16 N_T} \sum_{j=1}^{N_T} \overline{\left\{h_x(j\delta t) - \overline{h_x(j\delta t)}\right\}^2}$$

• where  $\overline{h_x}(t) = \frac{1}{N_{real}} \sum_{\alpha=1}^{N_{real}} h_x^{\alpha}(t)$ 

- q(T) = correlator between the infidelity minima
  - If  $\{h_x^a(t)\}_{a=1}^{N_{real}}$  are all uncorrelated
    - $ightarrow \overline{h_x(t)} \equiv 0$ , thus q(T) = 1
  - Only one minimum

 $\succ \overline{h_x}(t) \equiv h_x(t)$  and q(T) = 0



#### The control problem I

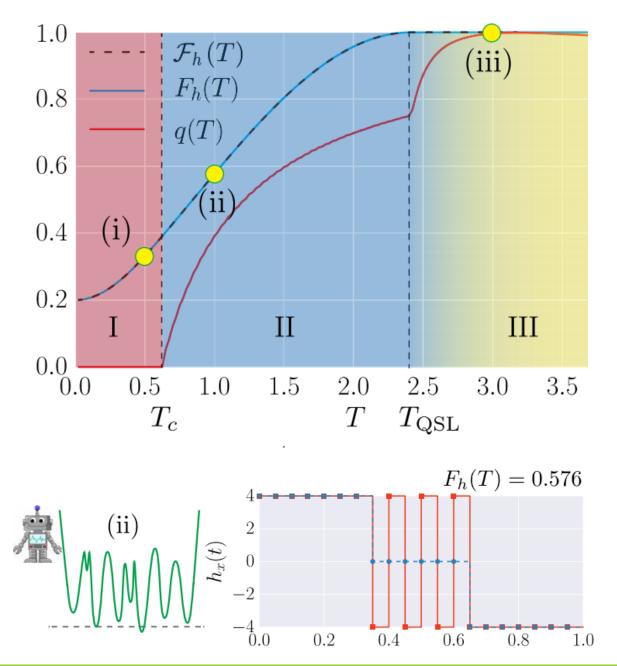
1st phase @  $T < T_c \approx 0.6$ :

- called: over constrained phase
- unique optimal protocol
  - $> q(T) \equiv 0 \longrightarrow$  infidelity landscape convex
  - Fidelity can be limited
- $T_c \to 0$  for  $|h_x| \to \infty$

Precession speed towards equator dependent on maximum possible allowed field strength

 $S_{\text{ent}}^{L_A=1}(t=0.00)=0.00 F_h(t=0.00)=0.200$ x y

The overconstrained phase:



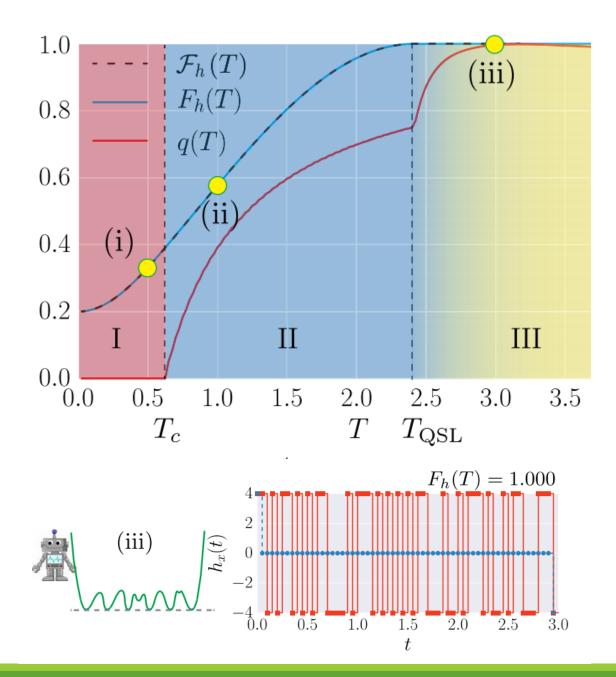
#### The control problem II

2nd phase @  $T_c$  < T <  $T_{QSL}$ :

- called: glassy phase
- infidelity landscape won't form a minima corresponding to protocols of unit fidelity

 $S_{\text{ent}}^{L_A=1}(t=0.00)=0.00 F_h(t=0.00)=0.200$ x y $|\downarrow\rangle$ 

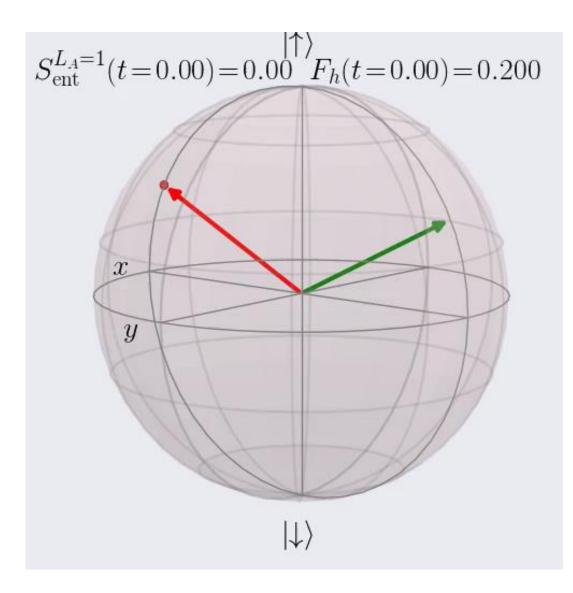
The glassy phase:



#### The control problem III

3rd phase @  $T > T_{QSL} \approx 2.4$ :

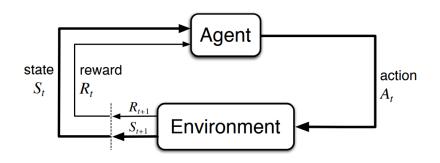
- called: controllable phase
- infinitely many protocols constructable
   > all prepare target state with unit fidelity



The controlable phase:

## Summary

#### FINITE MARKOV DECISION PROCESS

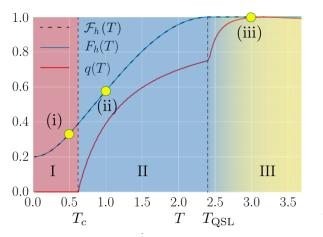


Policy: probability of each possible action from a given state

Value function: estimates future rewards depending on experience and policy

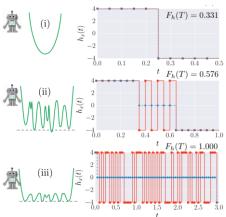
**Optimization: Watkins Q-learning** 

#### QUBIT CONTROLLING



#### 3 phases:

- Over constrained phase
- Glassy phase
- Controllable phase





- Reinforcement Learning in Different Phases of Quantum Control; Marin Bukov, Alexandre G. R. Day, † Dries Sels, Phillip Weinberg, Anatoli Polkovnikov and Pankaj Mehta
- Reinforcement Learning, second edition: An Introduction (Adaptive Computation and Machine Learning series) (2. Aufl.); Sutton, R. S. & Barto, A. G. (2018). Bradford Books.
- Technical Note: Q-Learning; Christopher J.C.H. Watkins & Peter Dayan, 1992 Kluwer Academic Publishers, Boston.

#### Pictures

https://www.freeimages.com/de/photo/rubix-cube-solved-1196475

https://www.chess-international.com/?p=754,

https://de.wikipedia.org/wiki/Schach

https://www.spielezar.ch/blog/spielregeln

https://medium.com/@tuzzer/cart-pole-balancing-with-q-learning-b54c6068d947

https://de.freepik.com/fotos-vektoren-kostenlos/pack-robot

https://www.youtube.com/watch?v=x4fdUx6d4QM

https://www.youtube.com/watch?v=QtVbch-02Fs