Reinforcement learning

IN DIFFERENT PHASES OF QUANTUM CONTROL

BY JASON BERGELT

Content

- Introduction
 - What do we want to achieve?
 - Why do we use reinforcement learning?
- Finite Markov Decision Processes
 - Formalism
 - Optimization
 - Exploration-exploitation dilemma
- Qubit controlling
 - Different phases of Quantum control

Introduction

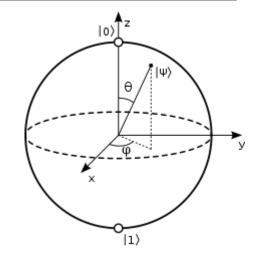
What do we want to achieve?

• <u>Main goal:</u>

- Control quantum states in large quantum many-body systems
 - In our case: control single qubit
 - > "Normal" bit has two states 0 & 1
 - > in contrast our qubit has states $|\Psi\rangle = a |0\rangle + b|1\rangle$
 - **Goal:** prepare a specific target state

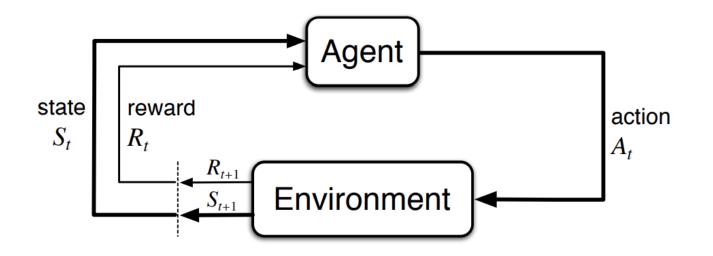
<u>Challenges:</u>

- Lack of limited theoretical understanding
- Complexity of simulating
 - > experimental systems are uncontrollable
 - > No finite-duration protocol to prepare the desire state
 - > Adiabatic limit for non equilibrium systems often does not exist

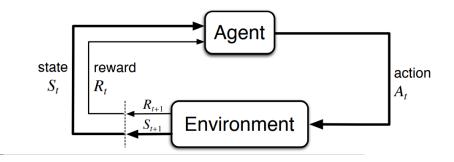


Why do we use reinforcement learning?

- Provides deep insight into nonequilibrium quantum dynamics
 - without knowledge of any model
- Discovers a stable suboptimal protocol
 - rivals optimal solutions in performance
 - **But:** stable to local perturbation
- Well suited to work with experimental data
 - Does not require the knowledge of the local gradient of control landscape
 - >Advantage in controlling for difficult models (difficulty due to disorder or dislocation)



Finite Markov Decision Processes (MDP)



Agent vs Environment

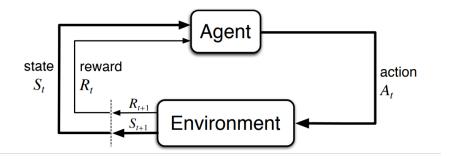
<u>AGENT</u>

- the "learner"
 - can be anything that wants to learn

ENVIRONMENT

- anything the agent can't change
 - agent maybe knows everything about the environment
 - But still faces difficult reinforcement learning task
 - Example: Rubik's Cube

Agent-Environment boundary = limit of agent's absolute control



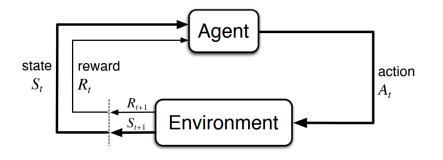
dynamics

- set by the environment
- the dynamics $p: S \times R \times S \times A \rightarrow [0,1]$
 - $p(s', r | s, a) \coloneqq \Pr\{S_t = s', R_t = r | S_{t-1} = s, A_{t-1} = a\}$
 - $\succ \sum_{s' \in S} \sum_{r \in R} p(s', r | s, a) = 1 \text{ for all } s \in S, a \in A(s)$

• later:

Environment Schrödinger equation • Qubit

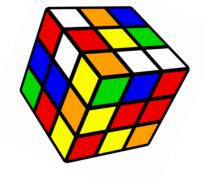
- > Dynamics become deterministic
 - Probability = delta-distribution

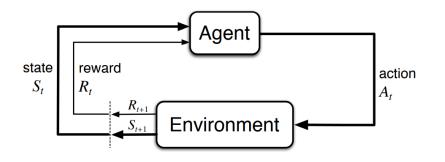


State space *S*

- State = "anything that might be useful information to the agent"
- includes information about the past agent-environment interaction

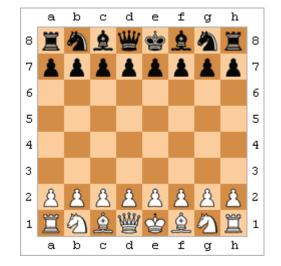
- At each time step t the agent chooses an action A_t based on state S_t
 - > so called: Markov property
 - Received reward R_{t+1} and new state S_{t+1}
 - Dependent on preceding state and action
 - Via discrete probability distribution

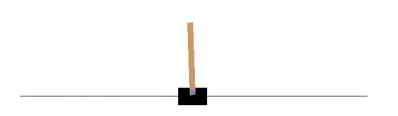


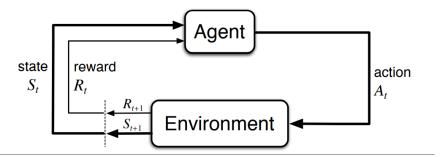


Action space *A*

- action = "Anything the agent can do to achieve our result"
 - > example:
 - > moving chess pieces
 - > moving balancing cart
 - and more



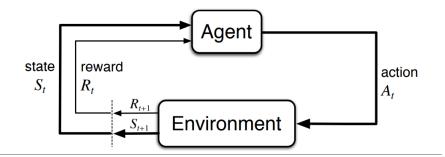




Policy $\pi(a|s)$

- policy = "probability of each possible action from a given state"
- probability to choose an action $A_t = a$ if in state $S_t = s$ at time t
 - > probability distribution over $a \in A(s)$ for each $s \in S$

optimized due to agent's experience



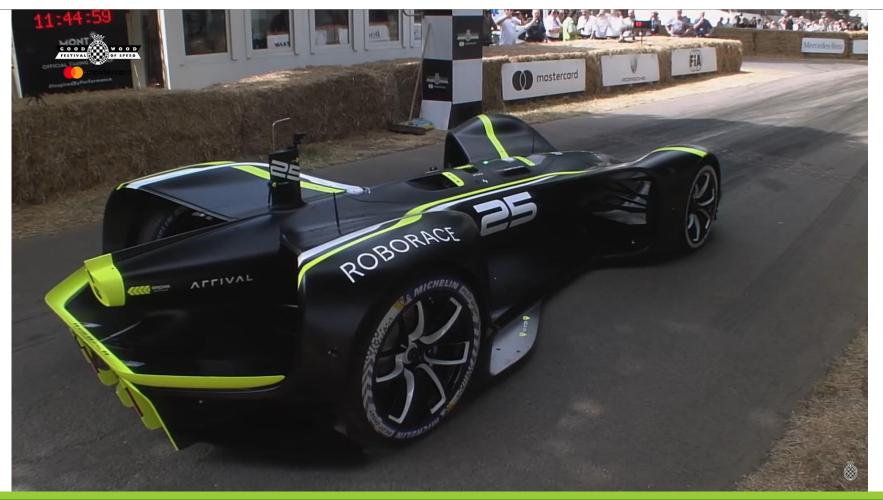
Reward space $\boldsymbol{\mathcal{R}}$

reward = "our way to tell the agent what we want"

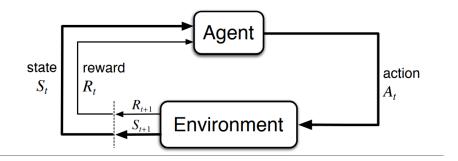
• reward $R_t \in \mathbb{R}$

- agent wants to maximize the reward
 - Important:
 - > provide rewards in such a way they achieve our goals
 - don't give rewards for subgoals

High reward



Low reward



Episodes

EPISODIC TASKS:

- every episode begins independently
- every episode ends in the same terminal state return could be infinite (see next slide)
- distinguish nonterminal state *S* from terminal state S⁺

• example:

CONTINUING TASKS:

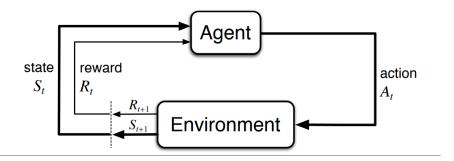
• $T = \infty$

- use discounting return
- example:

Unified notation:

$$\succ S_t \rightarrow S_{t,i}$$

State representation at time t of episode i



Return G_t

EPISODIC TASKS

Remember: agent receives rewards after each "time" step ➢ noted as R_{t+1}, R_{t+2}, R_{t+3},

- wish to maximize the expected return G_t
 - Simplest variation:

 $\succ G_t \equiv R_{t+1} + R_{t+2} + \dots + R_T$ (T: final step)

CONTINUING TASKS

- sum discounted rewards: • $G_t \equiv R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$
 - $= R_{t+1} + \gamma G_{t+1}$
- 0 ≤ γ ≤ 1 : called discount rate
 rewards received k times is worth only γ^{k-1} times

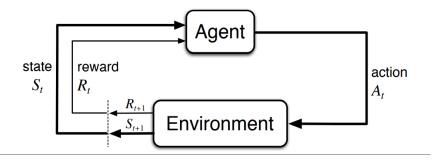
Unified notation:

- Add special *absorbing state*
 - Transition only on itself

$$\blacktriangleright$$
 Reward $R_t = 0$

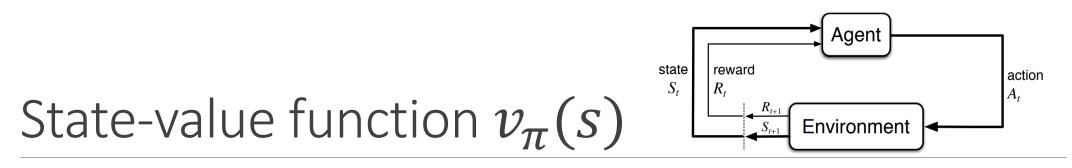
•
$$G_t \equiv \sum_{k=t+1}^T \gamma^{k-t-1} R_k$$

Optimization



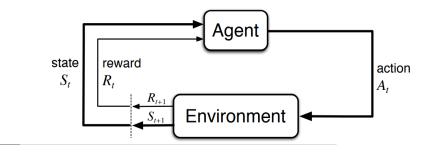
Value functions

- tells us the possible future rewards
 - Estimated from experience
- defined with respect to policies
 - used to determine policy
- two kinds of value functions
 - \succ state-value function $V_{\pi}(s)$
 - \succ action-value function $q_{\pi}(s, a)$



- value function of state s under policy π
- $\mathbf{v}_{\pi}(\mathbf{s}) \equiv \mathbb{E}_{\pi}(G_t | S_t = \mathbf{s}) = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = \mathbf{s}]$
- $\mathbb{E}_{\pi}[\cdot]$ is the expected value of a random variable
 - By given policy π and time step t
- value of terminal state is always zero
- Problem:
 - Separate average for every state
 - > Therefore:

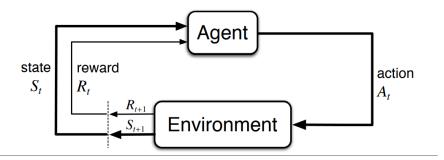
 $v_{\pi}(s) \equiv \mathbb{E}_{\pi}[G_t|S_t = s] = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$ > So called *Bellman equation*



Action-value function $q_{\pi}(s, a)$

- value function of an action a in state s under policy π
- $q_{\pi}(s, a) \equiv \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a]$
- \succ expected return starting in s, taking action a and afterwards policy π

 \succ is the basis of the policy



Optimal solutions

• π is better than π' , if expected return is greater or equal to $\pi' \ge \pi \ge \pi'$ if $v_{\pi}(s) \ge v_{\pi'}(s)$

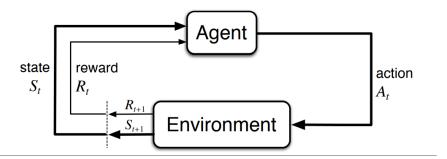
• Optimal state-value function:

• Optimal action-value function:

 $v_*(s) = \max_{\pi} (V_{\pi}(s))$ for all $s \in S$

 $q_*(s,a) \equiv \max_{\pi} q_{\pi}(s,a)$

> optimal policy is: $\begin{cases}
\pi_*(a|s) = 1, \text{ if } \arg\max_{a'} Q(s|a) \\
\pi_*(a|s) = 0, else
\end{cases}$



Optimization

solve Bellman equation

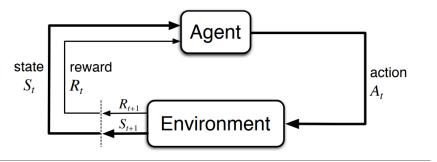
$$\succ v_{\pi}(s) \equiv \mathbb{E}_{\pi}[G_t|S_t = s] = \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$$

Find optimal q-function

> Problem:

- Rarely directly useful
- Solution relies on three assumptions
 - 1. Know the dynamics
 - 2. Enough computational recourses
 - 3. Markov property
- critical aspects for alternatives
 - Computational power
 - Availability of memory

rarely all true all the time



Optimization alternatives

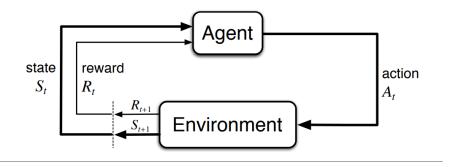
Goal: Find "perfect" $Q_{\pi}(s, a)$

TASKS WITH SMALL, FINITE SETS

- approximations using arrays or tables
 - "tabular case"

TASKS WITH CONTINUOUS STATES

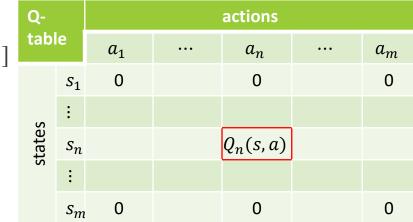
- use more compact parameterized function representation
 - > approximating optimal behavior
 - Dismiss states with a low probability
 - > Approximating optimal policies
 - More effort into learning good actions in frequently encountered states
 - Less effort into rarely encountered states

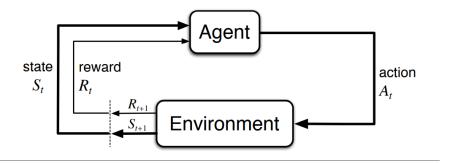


Watkins Q-learning

- use: action-value function Q(s,a)
- remember: Bellman equation $\succ v_{\pi}(s) \equiv \mathbb{E}_{\pi}[G_t|S_t = s] = \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$
- Define: $Q^*(s, a) \equiv Q^{\pi^*}(s, a)$ for all s,a
- steps:
 - Observe current state *s*_n
 - Select and perform a_n
 - Observe subsequent state s'
 - Receive immediate payoff r_n
 - update its Q_{n-1} values

$$Q_{n}(s,a) = \begin{cases} (1 - \alpha_{n})Q_{n-1}(s,a) + \alpha_{n}[r_{n} + \gamma V_{n-1}(s'_{n})] & \text{if } s = s_{n}, a = a_{n} \\ Q_{n-1}(s,a) & \text{otherwise} \end{cases}$$



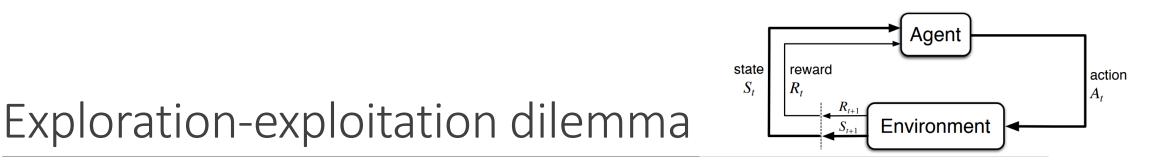


Learning rate α

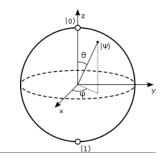
- Q-updating rule:
 - $Q(s_i, a_i) \leftarrow Q(s_i, a_i) + \alpha[r_i + \max_a[Q(s_{i+1}, a) Q(s_i, a_i)]]$
- $\alpha \in (0,1)$
 - $\geq \alpha \approx 1$: very fast learning

> Necessary to slow down if Bellman error $\delta_t = r_i + \max_a Q(s_{i+1}, a) - Q(s_i, a_i)$

 $> \alpha \approx 0$: very slow learning



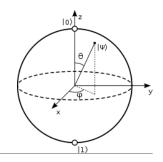
- necessary to avoid getting stuck in the in a local maximum of reward space
 - therefore, explore large parts of the RL state space
 - > no exploration = agent repeats a given policy
 - > Unclear if better policy exists
- if stuck in local maximum:
 - run multiple times with random starting conditions
 - Post select outcome
- > RL solution nearly perfect
 - Fidelity close to true global optimal fidelity
- RL independent of initial conditions
 - but huge drop in fidelity if phases different



1. Exploratory training stage

- exploits the current Q function to explore
- Amount of exploration set by "learning" temperature β_{RL}
 - $\succ \beta_{RL} = 0$: random action
 - $\succ \beta_{RL} = \infty$: greedy action
 - Respectively to current estimated of Q function
 - possible to determine policy:

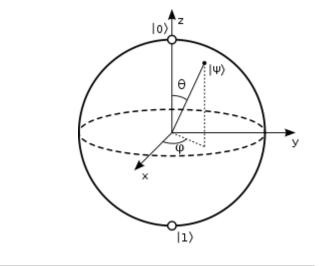
$$\pi(a|s) = \frac{e^{\beta_{RL}Q(s,a)}}{\sum_{a'} e^{\beta_{RL}Q(s,a')}}$$
Number of episodes increases Usage of β_{RL} decreases linearly



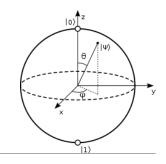
2. Replay training stage

- replay best encountered protocol
- lasts 40 episodes
- > take action according to softmax probability distribution based on values of Q-function
 - > at each time step:
 - > Look at Q(s,:) corresponding to all available actions
 - > Compute $P(a) \sim \exp(\beta_{RL}Q(s, a))$

agent will be biased toward the best encountered protocol
 Improving until good fidelity



Qubit controlling



Quantum agent and environment

• Environment = $\{i \ \partial_t | \Psi(t) \rangle = H(t) | \Psi(t) \rangle, | \Psi(0) \rangle = | \Psi_i \rangle$

$$H[h_x(t)] = -S^z - h_x(t)S^x$$

• is the Hamiltonian

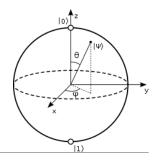
 \rightarrow Time dependence defined by the magnetic field $h_{\chi}(t)$

 \succ initial state $|\Psi_i\rangle$ at $h_x = -2$

$$\succ$$
 target state $|\Psi_*\rangle$ at $h_x = 2$ \leftarrow Ground state

agent constructs piecewise-constant protocols of duration T

> agent chooses a drive protocol strength $h_{\chi}(t)$ at each time $t = j \, \delta t$, with $j = \{0, 1, \dots, \frac{T}{\delta t}\}$

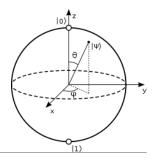


Restrictions

- no access to infinite control fields
 - → restrict to field $h_{\chi}(t) \in \{-4,4\}$
 - → use equal spaced tilings along the entire range of $h_x(t) \in [-4,4]$

restrict the RL algorithm to the family of bang-bang protocols
 protocols that switch abruptly between two states





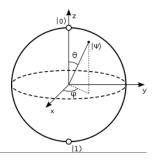
State space *S*

• $S = \{s = [t, h_x(t)]\}$

> All tuples $[t, h_x(t)]$ of time t and corresponding magnetic field $h_x(t)$

- model free !
 - Discrete states
 - > agent avoids difficulties produced by theoretical notions
 - 'time' t shows us where episodes ends

• even though only one control field available protocols grows exponentially with δt^{-1}

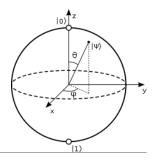


Action space *A*

• consists of all jumps δh_{χ} in the protocol $h_{\chi}(t)$

> protocols constructed as piece-wise constant functions

➢ restrict the available actions in every state s
> $h_x(t) \in \{-4,4\}$



Reward space $\boldsymbol{\mathcal{R}}$

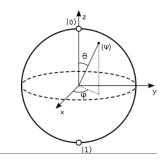
- real number in the interval [0,1]
- rewards given at the end of each episode to:

$$\succ r(t) = \begin{cases} 0\\ F_h(T) = |\langle \Psi_* | \Psi(T) \rangle|^2 \end{cases}$$

> we are not interested in the system during its evolution

> all that matters is to maximize the final fidelity $F_h(T)$

For fixed protocol duration T use the infidelity $I_h(T) = 1 - F_h(T)$ Global minimum corresponds to optimal driving protocol



Protocol construction algorithm

- algorithm:
- start in the initial RL state
- Take action
- next RL state
- initial q.s evolved forward in time

example:

•
$$s_0 = (t = 0, h_x = -4)$$

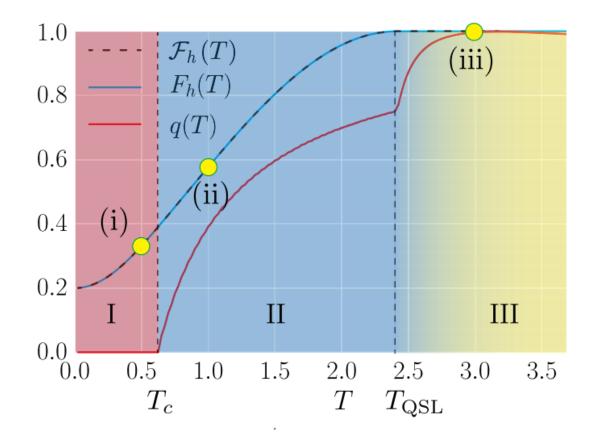
• $a = \delta h_x = 8$
• $s_1 = (\delta t, +4)$
• $t_0 = 0 \rightarrow t_1 = \delta t$
• $|\Psi(\delta t)\rangle = e^{-i*H[h_x=4]\delta t}|\Psi_i\rangle$

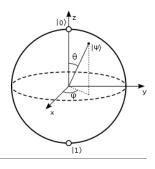
Compute reward and update Q function

Repeat until t = T

$$s_0 \rightarrow a_0 \rightarrow r_0 \rightarrow s_1 \rightarrow a_1 \rightarrow r_1 \rightarrow s_1 \rightarrow \cdots \rightarrow s_{N_T}$$

The 3 phases of reinforcement learning





The correlator

- total protocol duration T = fixed
- the infidelity: $h_x(t) \mapsto I_h(T) = 1 F_h(T)$

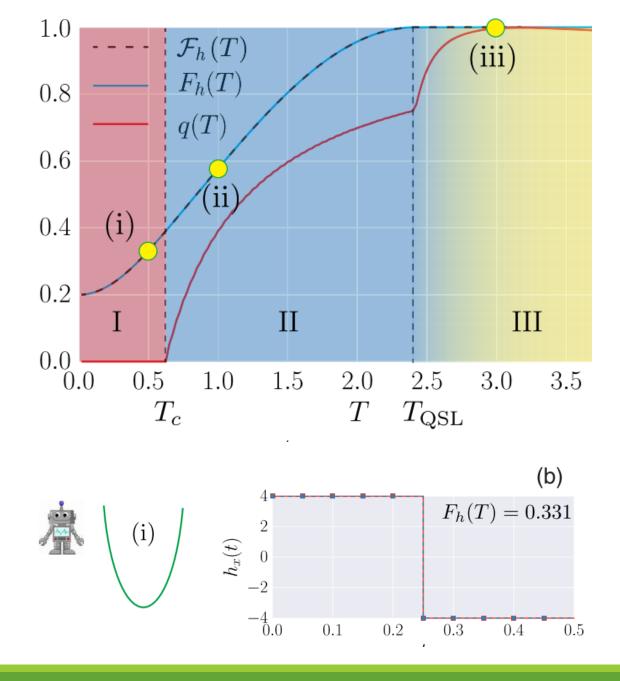
> global minimum is the optimal driving protocol

$$q(T) = \frac{1}{16 N_T} \sum_{j=1}^{N_T} \overline{\left\{h_x(j\delta t) - \overline{h_x(j\delta t)}\right\}^2}$$

• where $\overline{h_x}(t) = \frac{1}{N_{real}} \sum_{\alpha=1}^{N_{real}} h_x^{\alpha}(t)$

- q(T) = correlator between the infidelity minima
 - If $\{h_x^a(t)\}_{a=1}^{N_{real}}$ are all uncorrelated
 - $ightarrow \overline{h_x(t)} \equiv 0$, thus q(T) = 1
 - Only one minimum

 $\succ \overline{h_x}(t) \equiv h_x(t)$ and q(T) = 0



The control problem I

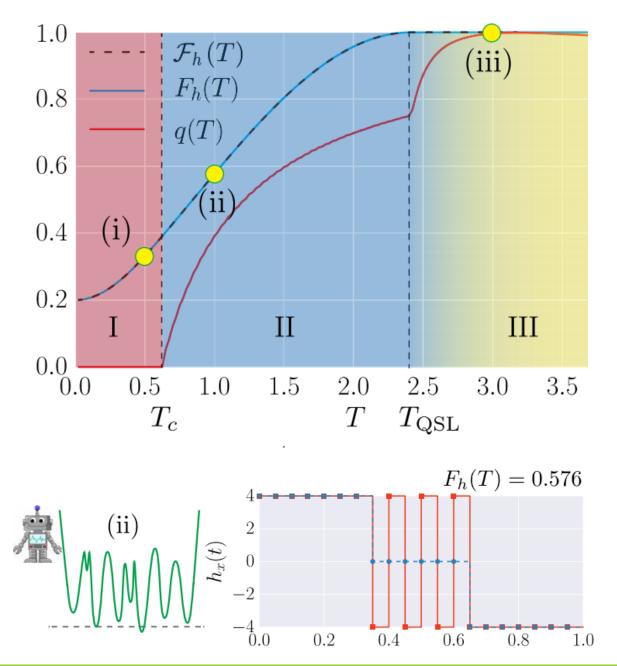
1st phase @ $T < T_c \approx 0.6$:

- called: over constrained phase
- unique optimal protocol
 - $> q(T) \equiv 0 \longrightarrow$ infidelity landscape convex
 - Fidelity can be limited
- $T_c \to 0$ for $|h_x| \to \infty$

Precession speed towards equator dependent on maximum possible allowed field strength

 $S_{\text{ent}}^{L_A=1}(t=0.00)=0.00 F_h(t=0.00)=0.200$ x y

The overconstrained phase:



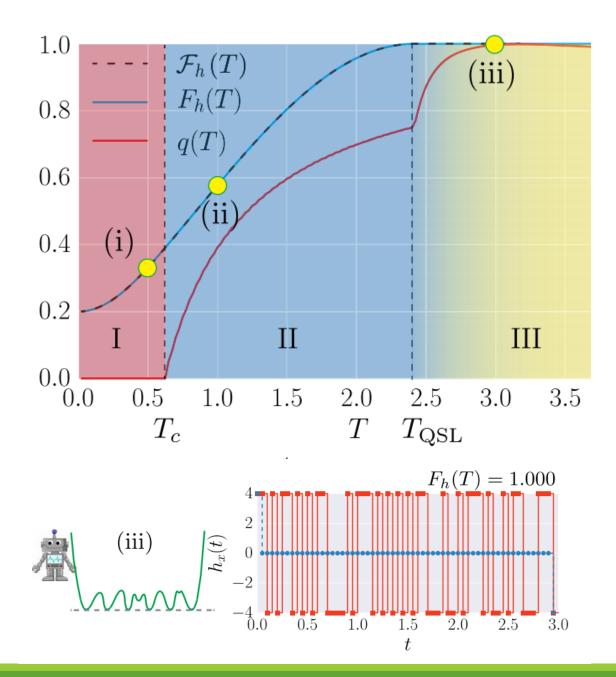
The control problem II

2nd phase @ T_c < T < T_{QSL} :

- called: glassy phase
- infidelity landscape won't form a minima corresponding to protocols of unit fidelity

 $S_{\text{ent}}^{L_A=1}(t=0.00)=0.00 F_h(t=0.00)=0.200$ x y $|\downarrow\rangle$

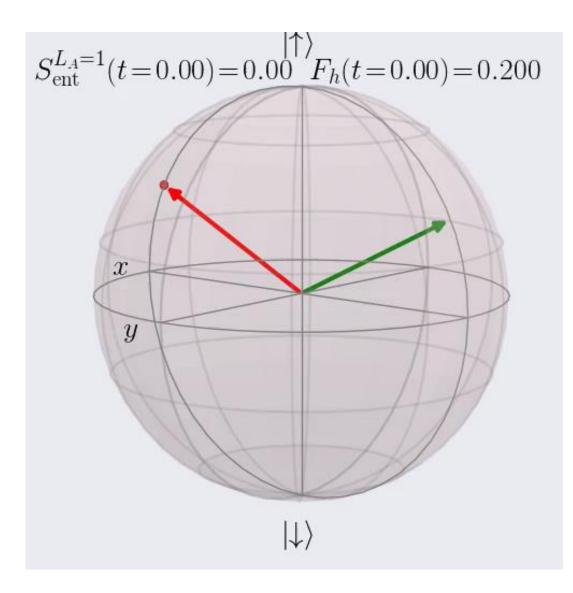
The glassy phase:



The control problem III

3rd phase @ $T > T_{QSL} \approx 2.4$:

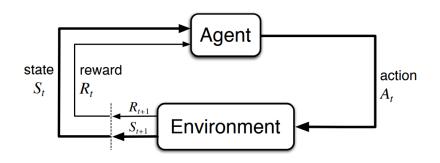
- called: controllable phase
- infinitely many protocols constructable
 > all prepare target state with unit fidelity



The controlable phase:

Summary

FINITE MARKOV DECISION PROCESS

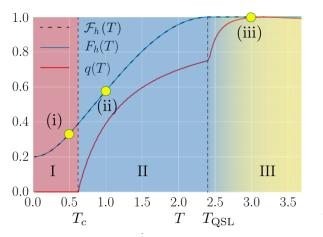


Policy: probability of each possible action from a given state

Value function: estimates future rewards depending on experience and policy

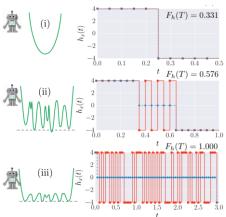
Optimization: Watkins Q-learning

QUBIT CONTROLLING



3 phases:

- Over constrained phase
- Glassy phase
- Controllable phase



- Reinforcement Learning in Different Phases of Quantum Control; Marin Bukov, Alexandre G. R. Day, † Dries Sels, Phillip Weinberg, Anatoli Polkovnikov and Pankaj Mehta
- Reinforcement Learning, second edition: An Introduction (Adaptive Computation and Machine Learning series) (2. Aufl.); Sutton, R. S. & Barto, A. G. (2018). Bradford Books.
- Technical Note: Q-Learning; Christopher J.C.H. Watkins & Peter Dayan, 1992 Kluwer Academic Publishers, Boston.

Pictures

https://www.freeimages.com/de/photo/rubix-cube-solved-1196475

https://www.chess-international.com/?p=754,

https://de.wikipedia.org/wiki/Schach

https://www.spielezar.ch/blog/spielregeln

https://medium.com/@tuzzer/cart-pole-balancing-with-q-learning-b54c6068d947

https://de.freepik.com/fotos-vektoren-kostenlos/pack-robot

https://www.youtube.com/watch?v=x4fdUx6d4QM

https://www.youtube.com/watch?v=QtVbch-02Fs