
Reinforcement learning
IN DIFFERENT PHASES OF QUANTUM CONTROL

BY JASON BERGELT

Content
• Introduction
▪ What do we want to achieve?

▪ Why do we use reinforcement learning?

• Finite Markov Decision Processes
▪ Formalism

▪ Optimization

▪ Exploration-exploitation dilemma

• Qubit controlling
• Different phases of Quantum control

Introduction

What do we want to achieve?
• Main goal:
• Control quantum states in large quantum many-body systems

• In our case: control single qubit

➢ „Normal“ bit has two states 0 & 1

➢ in contrast our qubit has states | ۧΨ = 𝑎 | ۧ0 + 𝑏| ۧ1

➢Goal: prepare a specific target state

• Challenges:

• Lack of limited theoretical understanding
• Complexity of simulating
➢ experimental systems are uncontrollable

➢ No finite-duration protocol to prepare the desire state

➢ Adiabatic limit for non equilibrium systems often does not exist

Why do we use reinforcement learning?
• Provides deep insight into nonequilibrium quantum dynamics
➢ without knowledge of any model

• Discovers a stable suboptimal protocol
➢ rivals optimal solutions in performance

➢But: stable to local perturbation

• Well suited to work with experimental data
• Does not require the knowledge of the local gradient of control landscape

➢Advantage in controlling for difficult models (difficulty due to disorder or dislocation)

Finite Markov Decision Processes
(MDP)

Agent vs Environment
AGENT ENVIRONMENT

• anything the agent can’t change
➢ agent maybe knows everything about the

environment
➢ But still faces difficult reinforcement learning task

▪ Example: Rubik’s Cube

• the “learner”
➢ can be anything that wants to learn

Agent-Environment boundary = limit of agent's absolute control

dynamics
• set by the environment

• the dynamics 𝑝: 𝑆 × 𝑅 × 𝑆 × 𝐴 → [0,1]
• 𝑝 𝑠′, 𝑟 𝑠, 𝑎 ≔ Pr 𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎}
➢ σ𝑠′∈𝑆σ𝑟∈𝑅 𝑝(𝑠

′, 𝑟|𝑠, 𝑎) = 1 for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴(𝑠)

• later:
• Qubit Schrödinger equation
➢ Dynamics become deterministic

➢ Probability = delta-distribution

Environment

State space S
• State = “anything that might be useful information to the agent”

• includes information about the past agent-environment interaction

• At each time step t the agent chooses an action 𝐴𝑡 based on state 𝑆𝑡
➢ so called: Markov property

• Received reward 𝑅𝑡+1 and new state 𝑆𝑡+1
➢ Dependent on preceding state and action

➢ Via discrete probability distribution

Action space A
• action = “Anything the agent can do to achieve our result”
➢ example:
➢ moving chess pieces

➢ moving balancing cart

➢ and more

Policy 𝜋(𝑎|𝑠)
• policy = “probability of each possible action from a given state”

• probability to choose an action 𝐴𝑡 = 𝑎 if in state 𝑆𝑡 = 𝑠 at time t
➢ probability distribution over 𝑎 ∈ 𝐴(𝑠) for each 𝑠 ∈ 𝑆

optimized due to agent's experience

Reward space R
• reward = “our way to tell the agent what we want”

• reward R𝑡 ∈ ℝ

• agent wants to maximize the reward
➢ Important:
➢ provide rewards in such a way they achieve our goals

➢ don’t give rewards for subgoals

High reward

Low reward

Episodes
EPISODIC TASKS:

• every episode begins independently

• every episode ends in the same terminal state

• distinguish nonterminal state S from terminal
state 𝑆+

• example:

CONTINUING TASKS:

• 𝑇 = ∞

• return could be infinite (see next slide)

➢ use discounting return

▪ example:

Unified notation:
➢ 𝑆𝑡 → 𝑆𝑡,𝑖

➢State representation at time t of episode i

Return 𝐺𝑡
EPISODIC TASKS

• Remember: agent receives rewards after each “time” step

➢ noted as 𝑅𝑡+1, 𝑅𝑡+2, 𝑅𝑡+3, ….

• wish to maximize the expected return 𝐺𝑡
• Simplest variation:

➢ 𝐺𝑡 ≡ 𝑅𝑡+1 + 𝑅𝑡+2 +⋯+ 𝑅𝑇 (T: final step)

CONTINUING TASKS

• sum discounted rewards:

➢ 𝐺𝑡 ≡ 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯ = σ𝑘=0
∞ 𝛾𝑘𝑅𝑡+𝑘+1

= 𝑅𝑡+1 + 𝛾𝐺𝑡+1

• 0 ≤ 𝛾 ≤ 1 : called discount rate

➢ rewards received k times is worth only 𝛾𝑘−1 times

Unified notation:
• Add special absorbing state

➢ Transition only on itself
➢ Reward 𝑅𝑡 = 0

• 𝐺𝑡 ≡ σ𝑘=𝑡+1
𝑇 𝛾𝑘−𝑡−1𝑅𝑘

Optimization

Value functions
• tells us the possible future rewards
• Estimated from experience

• defined with respect to policies
➢ used to determine policy

• two kinds of value functions
➢ state-value function 𝑉𝜋(𝑠)

➢ action-value function 𝑞𝜋(𝑠, 𝑎)

State-value function 𝑣𝜋(𝑠)
• value function of state s under policy 𝜋

• v𝜋 s ≡ 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝔼𝜋 σ𝑘=0
∞ 𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠

• 𝔼𝜋 ∙ is the expected value of a random variable
• By given policy 𝜋 and time step t

• value of terminal state is always zero

• Problem:
• Separate average for every state

➢ Therefore:

𝑣𝜋 𝑠 ≡ 𝔼𝜋 𝐺𝑡|𝑆𝑡 = 𝑠 = σ𝑎 𝜋 𝑎 𝑠 σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾 𝑣𝜋 𝑠′]

➢ So called Bellman equation

Action-value function 𝑞𝜋(𝑠, 𝑎)
• value function of an action a in state s under policy 𝜋

• 𝑞𝜋 𝑠, 𝑎 ≡ 𝔼𝜋 𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = 𝔼𝜋 σ𝑘=0
∞ 𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

➢ expected return starting in s, taking action a and afterwards policy 𝜋

➢ is the basis of the policy

Optimal solutions
• 𝜋 is better than 𝜋′, if expected return is greater or equal to 𝜋′
➢ 𝜋 ≥ 𝜋′ if 𝑣𝜋 𝑠 ≥ 𝑣𝜋′(𝑠)

• Optimal state-value function:

𝑣∗ 𝑠 = max
𝜋

𝑉𝜋 𝑠 for all 𝑠 ∈ 𝑆

• Optimal action-value function:

𝑞∗ 𝑠, 𝑎 ≡ max
𝜋

𝑞𝜋(𝑠, 𝑎)

➢ optimal policy is:

ቊ
𝜋∗ 𝑎 𝑠 = 1,
𝜋∗(𝑎|𝑠) = 0,

if argmax
𝑎′

𝑄(𝑠|𝑎)

𝑒𝑙𝑠𝑒

Optimization
• solve Bellman equation
➢ 𝑣𝜋 𝑠 ≡ 𝔼𝜋 𝐺𝑡|𝑆𝑡 = 𝑠 = σ𝑎 𝜋 𝑎 𝑠 σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾 𝑣𝜋 𝑠′]

➢ Find optimal q-function

➢ Problem:
➢ Rarely directly useful

➢ Solution relies on three assumptions

1. Know the dynamics

2. Enough computational recourses

3. Markov property

• critical aspects for alternatives
• Computational power

• Availability of memory

rarely all true all the time

Optimization alternatives

TASKS WITH SMALL, FINITE SETS

• approximations using arrays or tables
➢ “tabular case”

TASKS WITH CONTINUOUS STATES

• use more compact parameterized function
representation
➢ approximating optimal behavior
➢ Dismiss states with a low probability

➢Approximating optimal policies
➢ More effort into learning good actions in frequently

encountered states

➢ Less effort into rarely encountered states

Goal: Find “perfect” 𝑄𝜋 𝑠, 𝑎

Watkins Q-learning
• use: action-value function Q(s,a)

• remember: Bellman equation
➢ 𝑣𝜋 𝑠 ≡ 𝔼𝜋 𝐺𝑡|𝑆𝑡 = 𝑠 = σ𝑎𝜋 𝑎 𝑠 σ𝑠′,𝑟 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾 𝑣𝜋 𝑠′]

• Define: 𝑄∗ 𝑠, 𝑎 ≡ 𝑄𝜋∗ 𝑠, 𝑎 for all s,a

• steps:
• Observe current state 𝑠𝑛
• Select and perform 𝑎𝑛
• Observe subsequent state 𝑠′

• Receive immediate payoff 𝑟𝑛
• update its 𝑄𝑛−1 values

Q-updating rule:

𝑄𝑛 𝑠, 𝑎 = ቊ
1 − 𝛼𝑛 𝑄𝑛−1 𝑠, 𝑎 + 𝛼𝑛 𝑟𝑛 + 𝛾𝑉𝑛−1 s𝑛

′

𝑄𝑛−1(𝑠, 𝑎)
if s=sn, a=an
otherwise

Q-
table

actions

𝑎1 ⋯ 𝑎𝑛 ⋯ 𝑎𝑚

st
at

es

𝑠1 0 0 0

⋮

𝑠𝑛 𝑄𝑛(𝑠, 𝑎)

⋮

𝑠𝑚 0 0 0

Learning rate α
• Q-updating rule:

◦ 𝑄 𝑠𝑖 , 𝑎𝑖 ← 𝑄 𝑠𝑖 , 𝑎𝑖 + 𝜶[𝑟𝑖 +max
𝑎
[𝑄 𝑠𝑖+1, 𝑎 − 𝑄(𝑠𝑖 , 𝑎𝑖)]]

• 𝛼 ∈ 0,1
➢ 𝛼 ≈ 1: very fast learning
➢ Necessary to slow down if Bellman error 𝛿𝑡 = 𝑟𝑖 +max

𝑎
𝑄 𝑠𝑖+1, 𝑎 − 𝑄(𝑠𝑖 , 𝑎𝑖)

➢ 𝛼 ≈ 0: very slow learning

Exploration-exploitation dilemma
• necessary to avoid getting stuck in the in a local maximum of reward space
➢ therefore, explore large parts of the RL state space

➢ no exploration = agent repeats a given policy
➢ Unclear if better policy exists

• if stuck in local maximum:
➢ run multiple times with random starting conditions
➢ Post select outcome

➢ RL solution nearly perfect
➢ Fidelity close to true global optimal fidelity

• RL independent of initial conditions
➢ but huge drop in fidelity if phases different

1. Exploratory training stage
• exploits the current Q function to explore

• Amount of exploration set by “learning” temperature 𝛽𝑅𝐿
➢ 𝛽𝑅𝐿 = 0 : random action

➢ 𝛽𝑅𝐿 = ∞ : greedy action

➢ Respectively to current estimated of Q function

➢ possible to determine policy:

𝜋 𝑎 𝑠 =
𝑒𝛽𝑅𝐿𝑄(𝑠,𝑎)

σ𝑎′ 𝑒
𝛽𝑅𝐿𝑄 𝑠,𝑎′

Number of episodes increases Usage of 𝛽𝑅𝐿 decreases linearly

2. Replay training stage
• replay best encountered protocol

➢ lasts 40 episodes

➢ take action according to softmax probability distribution based on values of Q-function
➢ at each time step:
➢ Look at Q(s,:) corresponding to all available actions

➢ Compute 𝑃 𝑎 ~ exp(𝛽𝑅𝐿𝑄 𝑠, 𝑎)

➢ agent will be biased toward the best encountered protocol
➢Improving until good fidelity

Qubit controlling

Quantum agent and environment
• Environment = {𝑖 𝜕𝑡 ۧΨ 𝑡 = 𝐻 𝑡 ۧΨ 𝑡 , | ۧΨ 0 = | ۧΨ𝑖

𝐻 ℎ𝑥 𝑡 = −𝑆𝑧 − ℎ𝑥 𝑡 𝑆𝑥

• is the Hamiltonian
➢ Time dependence defined by the magnetic field ℎ𝑥(𝑡)

➢ initial state | ۧΨ𝑖 at ℎ𝑥 = −2

➢ target state | ۧΨ∗ at ℎ𝑥 = 2

•agent constructs piecewise-constant protocols of duration T

➢ agent chooses a drive protocol strength ℎ𝑥(𝑡) at each time 𝑡 = 𝑗 𝛿𝑡, 𝑤𝑖𝑡ℎ 𝑗 = 0,1,⋯ ,
𝑇

𝛿𝑡

Ground state

Restrictions
• no access to infinite control fields
➢ restrict to field ℎ𝑥 𝑡 ∈ {−4,4}

➢ use equal spaced tilings along the entire range of ℎ𝑥 𝑡 ∈ −4,4

• restrict the RL algorithm to the family of bang-bang protocols
➢ protocols that switch abruptly between two states

State space S
• 𝑆 = 𝑠 = [𝑡, ℎ𝑥 𝑡]
➢All tuples [𝑡, ℎ𝑥 𝑡] of time t and corresponding magnetic field ℎ𝑥(𝑡)

• model free !
• Discrete states

➢ agent avoids difficulties produced by theoretical notions

➢ ‘time’ t shows us where episodes ends

• even though only one control field available protocols grows exponentially with 𝛿𝑡−1

Action space A
• consists of all jumps 𝛿ℎ𝑥 in the protocol ℎ𝑥(𝑡)

➢ protocols constructed as piece-wise constant functions

➢ restrict the available actions in every state s
➢ ℎ𝑥 𝑡 ∈ {−4,4}

Reward space R
• real number in the interval [0,1]

• rewards given at the end of each episode to:

➢ 𝑟 𝑡 = ቊ
0

𝐹ℎ 𝑇 = Ψ∗|Ψ(𝑇)
2

➢ we are not interested in the system during its evolution

➢ all that matters is to maximize the final fidelity 𝐹ℎ(𝑇)

➢For fixed protocol duration T use the infidelity 𝐼ℎ 𝑇 = 1 − 𝐹ℎ(𝑇)
➢Global minimum corresponds to optimal driving protocol

Protocol construction algorithm
• algorithm:

• start in the initial RL state

• Take action

• next RL state

➢ initial q.s evolved forward in time

➢Compute reward and update Q function

➢Repeat until t = T

▪ example:

▪ 𝑠0 = 𝑡 = 0, ℎ𝑥 = −4

▪ 𝑎 = 𝛿ℎ𝑥 = 8

▪ 𝑠1 = 𝛿𝑡, +4

▪ 𝑡0 = 0 → 𝑡1 = 𝛿𝑡
▪ | ۧΨ(𝛿𝑡) = 𝑒−𝑖∗𝐻 ℎ𝑥=4 𝛿𝑡| ۧΨ𝑖

𝑠0 → 𝑎0 → 𝑟0 → 𝑠1 → 𝑎1 → 𝑟1 → 𝑠1 → ⋯ → 𝑠𝑁𝑇

The 3 phases of reinforcement learning

The correlator
• total protocol duration T = fixed

• the infidelity: ℎ𝑥 𝑡 ⟼ 𝐼ℎ 𝑇 = 1 − 𝐹ℎ(𝑇)
➢ global minimum is the optimal driving protocol

𝑞 𝑇 =
1

16 𝑁𝑇
σ𝑗=1
𝑁𝑇 ℎ𝑥 𝑗𝛿𝑡 − ℎ𝑥 𝑗𝛿𝑡

2

• where ℎ𝑥 𝑡 =
1

𝑁𝑟𝑒𝑎𝑙
σ𝛼=1
𝑁𝑟𝑒𝑎𝑙 ℎ𝑥

𝛼(𝑡)

• q(T) = correlator between the infidelity minima

• If ℎ𝑥
𝑎 𝑡 𝑎=1

𝑁𝑟𝑒𝑎𝑙 are all uncorrelated

➢ ℎ𝑥(𝑡) ≡ 0, thus q(T) = 1

• Only one minimum

➢ ℎ𝑥(𝑡) ≡ ℎ𝑥(𝑡) and 𝑞 𝑇 = 0

The control problem I
1st phase @ 𝑇 < 𝑇𝑐 ≈ 0.6:

• called: over constrained phase

• unique optimal protocol
➢ 𝑞 𝑇 ≡ 0 infidelity landscape convex

➢ fidelity can be limited

• 𝑇𝑐 → 0 for ℎ𝑥 → ∞

➢Precession speed towards equator dependent
on maximum possible allowed field strength

The
overcon-
strained
phase:

The control problem II
2nd phase @ 𝑇𝑐 < 𝑇 < 𝑇𝑄𝑆𝐿:

• called: glassy phase

• infidelity landscape won’t form a minima
corresponding to protocols of unit fidelity

The
glassy
phase:

The control problem III
3rd phase @ 𝑇 > 𝑇𝑄𝑆𝐿 ≈ 2.4:

• called: controllable phase

• infinitely many protocols constructable
➢ all prepare target state with unit fidelity

The
control-
able
phase:

Summary
FINITE MARKOV DECISION PROCESS

Policy: probability of each possible action from
a given state

Value function: estimates future rewards
depending on experience and policy

Optimization: Watkins Q-learning

QUBIT CONTROLLING

3 phases:
◦ Over constrained phase

◦ Glassy phase

◦ Controllable phase

Bibliography
▪Reinforcement Learning in Different Phases of Quantum Control; Marin Bukov, Alexandre G. R. Day,† Dries Sels, Phillip Weinberg, Anatoli Polkovnikov and Pankaj Mehta

▪Reinforcement Learning, second edition: An Introduction (Adaptive Computation and Machine Learning series) (2. Aufl.); Sutton, R. S. & Barto, A. G. (2018).
Bradford Books.

▪Technical Note: Q-Learning; Christopher J.C.H. Watkins & Peter Dayan, 1992 Kluwer Academic Publishers, Boston.

Pictures
https://www.freeimages.com/de/photo/rubix-cube-solved-1196475

https://www.chess-international.com/?p=754,

https://de.wikipedia.org/wiki/Schach

https://www.spielezar.ch/blog/spielregeln

https://medium.com/@tuzzer/cart-pole-balancing-with-q-learning-b54c6068d947

https://de.freepik.com/fotos-vektoren-kostenlos/pack-robot

https://www.youtube.com/watch?v=x4fdUx6d4QM

https://www.youtube.com/watch?v=QtVbch-02Fs

https://www.freeimages.com/de/photo/rubix-cube-solved-1196475
https://www.chess-international.com/?p=754
https://de.wikipedia.org/wiki/Schach
https://www.spielezar.ch/blog/spielregeln
https://medium.com/@tuzzer/cart-pole-balancing-with-q-learning-b54c6068d947
https://de.freepik.com/fotos-vektoren-kostenlos/pack-robot
https://www.youtube.com/watch?v=x4fdUx6d4QM
https://www.youtube.com/watch?v=QtVbch-02Fs

