

Analyzing non equilibrium quantum states through snapshots with artificial networks

Introduction

- Analysis of <u>non-equilibrium dynamics</u> using <u>neural</u> <u>networks</u> and <u>experimental data</u>
- Network is trained with numerical data
- Experimental data is generated with <u>quantum simulation</u> <u>devices</u>

Quantum simulation

Quantum simulation Basic idea

Goal: access the time evolution of a quantum system

Quantum simulation via ultra cold atoms Experimental realization

- Trap atoms into an optical potential consisting of two laser beams
- Manipulation of laser beams enables simulation of relevant Hamiltonian parameters

$$\hat{\mathcal{H}} = \sum_{i} \left[-J \left(\hat{a}_{i}^{\dagger} \hat{a}_{i+1} + \text{h.c.} \right) + \frac{U}{2} \hat{n}_{i} (\hat{n}_{i} - 1) + W h_{i} \hat{n}_{i} \right]$$

Quantum simulation via ultra cold atoms Parameter manipulation

- Manipulation of disorder parameter is generated trough quasi periodic potentials
- Realized by superposition of two different laser beams

Quantum simulation via ultra cold atoms Generating snapshots

- Data acquisition using quantum gas microscope
- Allows to generate quantum snapshots

Many body localized phases

Many-body localized phases Approaching thermal equilibrium

- Red dots represent position of atoms
- Quantum systems tend to thermal equilibrium on long time scales

Single image Averaged image

Many-body localized phases Approaching thermal equilibrium

This behavior is suggested by the following calculation:

$$\begin{split} \langle O(t) \rangle &= \langle \psi_0 | e^{iHt} O e^{-iHt} | \psi_0 \rangle = \sum_{m,n} \langle \psi_0 | m \rangle \langle m | O | n \rangle \langle n | \psi_0 \rangle \cdot e^{-i(E_n - E_m)t} \\ & \uparrow \\ & \text{oscillates fast for m unequal to n} \\ & = \sum_n |\langle \psi_0 | n \rangle|^2 \langle n | O | n \rangle \\ & \longrightarrow \\ & \text{sum of these terms} \\ & \text{approaches zero} \end{split}$$

- Which gives the diagonal elements of the observable depending on the initial state
- Assume diagonal elements are effectively constant, then we approach the expectation value of the micro canonical ensemble

Many-body localized phases Eigenstate thermalization hypothesis

 For an observable on long time scales the diagonal matrix elements are a smooth function of the energy, matching its micro canonical expectation value

$$\langle n|O|n\rangle \simeq \bar{O}(E)$$

 Off-diagonal matrix elements will vanish in the thermodynamic limit exponentially fast

Many-body localized phases Avoiding thermalization with disorder

Eigenstates become product states contradicting the ETH

Here the question arises at which finite value of h the phase transition actually occurs?

Many-body localized phases Avoiding thermal equilibrium

 For higher disorder values and on long time scales the positions of the atoms are less evenly distributed

Analysis of non-equilibrium quantum states

Analysis of non-equilibrium quantum states The model

- Numerical snapshots are provided by exact diagonalization (where the atom number per site is the observable of interest)
- Experimental snapshots are provided by quantum simulation
- Snapshots represent time-evolution of the wave function

Analysis of non-equilibrium quantum states Training the neural network

 Train network to distinguish snapshots of extremal cases of disorder strength after a global quench, starting with one atom per site

 The network is trained to label the input as equilibrium/ thermal or as MBL/non-thermal

Analysis of non-equilibrium quantum states The cross entropy cost function

$$\mathcal{L}(X,Y) = -\frac{1}{n} \sum_{i=1}^{n} y^{(i)} \ln a(x^{(i)}) + (1 - y^{(i)}) \ln(1 - a(x^{(i)}))$$
labels for
input
examples
Output of
network

- Suitable cost function for classification problem
- The gradient penalizes stronger for bigger errors

Analysis of non-equilibrium quantum states Cross entropy example

- Consider a two classes problem where 0 and 1 are the only possible labels
- Assume network gives output a = 0.9 but the correct label should actually be 0

 $\Longrightarrow L_{CE}$ changes weights faster then L_{SE}

Analysis of non-equilibrium quantum states Performance of the network

 Once the network reaches a high accuracy we put in experimental snapshots with different disorder strengths

Learning thermalization

Learning thermalization The approach to thermal equilibrium

- Investigate dynamical evolution of the system
- Train neural network to distinguish equilibrium from dynamical behavior for each time step

Matching energy density and temperature

Learning thermalization The training data

- Input data obtained by exact diagonalization for different time steps
- Graph represents fraction labeled as disorder for different disorder strengths and times

Learning thermalization The training data

High disorder fractionHigh disorder fractionHigh disorder fractionLow disorder fraction

for low disorder the network has an accuracy of 50% equivalent to guess between thermal and non-thermal state

Learning thermalization Performance of the network

Network labeling performance for experimental data

Finding exact transition

Finding exact transition Confusion learning scheme

- Check if in a set of snapshots with different 0.3 < W/J < 11.0 a W* exists where data changes qualitatively
- Start by training network with a guessing W*

Finding exact transition Confusion learning scheme

- Test the accuracy of the network with further experimental data assuming a qualitative change in the data
- We expect for different guesses different accuracies:

W*/J = 0.3	labeling as Phase B	with high accuracy
------------	---------------------	--------------------

- W*/J = 11 I labeling as Phase A with high accuracy
 - W* < W Confusion occurs in labeling Phases
 - W* > W Confusion occurs in labeling Phases

Finding exact transition Test accuracy function

 A phase transition occurs at W*/J = 7 (figure a)

 Phase transition remains on short time scales hidden

Summary

Summary Analysis of non-equilibrium quantum states

- Machine learning techniques were used to to study nonequilibrium dynamics of ultra cold atoms
- Different lattice sizes were analyzed finding finite size effects
- Approach is not limited to system sizes

Institut für Physik | Bernhard Wortmann | 21.06.21

A. Bohrdt et al. arXiv:2012.11586v1, 2020

Summary Learning thermalization

- The thermalization behavior was investigated time step wise enabling the recognition of MBL phases
- The method is applicable on a variety of models
- The method suffers from the need of numerically sampled snapshots

Summary Finding exact transition

- An unsupervised learning scheme was applied to find the exact transition value (W/J = 7)
- The network seems to recognize observables able to identify a qualitative change in the data for long time scales
- The network recognized a transition without any bias

A. Bohrdt et al. arXiv:2012.11586v1, 2020

Bibliography

- [1] Analyzing non-equilibrium quantum states through snapshots with artificial, A. Bohrdt et al. arXiv:2012.11586v1, 2020
- [2] Quantum Simulation, I. M. Georgescu, arXiv:1308.6253v3, 2014
- [3] Learning phase transitions by confusion, Evert P. L. Ye-Hua Liu and Sebastian D. Huber, Nature Physics, 2017
- [4] Many-body localization: an introduction and selected topics, Fabien Alet, Nicolas Laflorencie, CR Physique 2018
- [5] Tools for quantum simulation with ultracold atoms in optical lattices, Florian Schäfer et al., nature review, 2020
- [6] Exploring the many-body localization transition in two dimensions, Jae-yoon Choi et al., arXiv:1604.04178v1, 2016
- [7] Josh M Deutsch. "Quantum statistical mechanics in a closed system". In: Physical Review A 43.4 (1991), p. 2046.

Universitä

Thank you!

