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Mathematical Preliminaries
• Basic idea: can we reconstructing quantum states from

measurements? How to do so?

Definition
An informationally complete positive-operator valued measure
[1] (POVM), Πi is the set of operators on H such that:

Πi ≥ 0 Semi-Positivity∑
i

Πi = 1

pi = Tr (ρΠi) Born rule
{Πi} = span(B(H)) Informational Completeness
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Mathematical Preliminaries
• Given informational completeness, we can invert this

relationship

Preposition

The density operator can be written as:

ρ =
∑

ij

piT−1
ij Πj

Where:
Tij = Tr

(
ΠiΠj

)
Is the called the overlap matrix.

• Note that the overlap matrix may not be invertable
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Mathematical Preliminaries

Example

A set of POVMs are given by Pauli-4 Tetrahedral operators:

ΠTetra =

{
Πi =

1
4

(1 + si · σ)

}
s0 = (0,0,1) s1 =

(
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2
3
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3

)
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2
2
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√
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3
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1
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Mathematical Preliminaries

Example

A set of POVMs are given by Pauli-4 Tetrahedral operators:

Π0 =
1
2

(
1 0
0 0

)
Π2 =

1
12

(
2 −

√
2−
√

6i
−
√

2 +
√

6i 4

)
Π1 =

1
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(
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)
Π3 =

1
4

(
2 −

√
2 +
√

6i
−
√

2−
√

6i 4

)

T−1 =


5 −1 −1 −1
−1 5 −1 −1
−1 −1 5 −1
−1 −1 −1 5


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Mathematical Preliminaries
• Well then what is the problem? Experimentally, you cannot

know probabilities pi , you can only measure frequencies fi .

• Number of operators scales exponentially as 4N different
operators for N qubits.

Definition
The likelihood is a measure of the degree of belief in the
hypothesis that for a particular data set D, the system was
prepared in the quantum state ρ [2]. For QST, we have the
multinomial distribution:

L (D|ρ) = N
k∏
i

pfi
i =

n!∏k
i fi !

k∏
i

Tr (ρΠi)
fi
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Mathematical Preliminaries

• Consider the negative log instead which we call the cost
function

C = −
∑

i

fi lnpi = −
∑

i

fi ln [Tr (ρΠi)] = DKL (D|ρ) +HD

Where DKL is the KL divergence, a measure of how close
the actual probability distribution is to our measured data.
We want to minimise this.
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Mathematical Preliminaries
• Before talking about NN, I will give an example of an MLE

algorithm by (Hradil et al., 2004). Idea from calculus of
variations

Preposition

The variation of C w.r.t. ρ is given by:

δC(ρ) = C(ρ− δρ)− C(ρ) = Tr ((R − 1)ρ(R − 1))

δρ = (R − 1) ρ+ ρ (R − 1)

And is 0 when:
Rρ = ρR = ρ

Where:
R = −

∑
i

fi
pi

Πi
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Mathematical Preliminaries

Algorithm (RρR)

• Start with maximally mixed state ρ = 1
dim(H)1 and some

precision ε and set the trace distance TD > ε

• While TD > ε:
Calculate R(k)

Compute trace distance 1
2Tr
(
|R(k)ρ(k) − ρ(k)|

)
= TD

Compute δρ(k) =
((

R(k) − 1)
)
ρ(k) + ρ(k)

(
R(k) − 1

))
Update ρ(k+1) = ρ(k) + αδρ(k)
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Mathematical Preliminaries
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RBM QST
• Generative models are suitable for this problem. Our

implementation based on (Carrasquilla et al., 2019).

• The categorical input data is one-hot encoded:(
0
3

)
−→

(
1 0 0 0
0 0 0 1

)

•

...
vk

1

vk
2

h1

h16

cj
bk

j W k
ij

12 / 25

Mo Abedi
Department of Physics University of Cologne



RBM QST
• Generative models are suitable for this problem. Our

implementation based on (Carrasquilla et al., 2019).
• The categorical input data is one-hot encoded:(

0
3

)
−→

(
1 0 0 0
0 0 0 1

)

•

...
vk

1

vk
2

h1

h16

cj
bk

j W k
ij

12 / 25

Mo Abedi
Department of Physics University of Cologne



RBM QST
• Generative models are suitable for this problem. Our

implementation based on (Carrasquilla et al., 2019).
• The categorical input data is one-hot encoded:(

0
3

)
−→

(
1 0 0 0
0 0 0 1

)

•

...
vk

1

vk
2

h1

h16

cj
bk

j W k
ij

12 / 25

Mo Abedi
Department of Physics University of Cologne



RBM QST
• Want to minimise the cost function (KL) divergence.

Generally hard so instead take cost function to be (CD)
(Salakhutdinov et al., 2007) (the difference between KL
divergences at 0 and k Gibbs sample steps)

• The activation probabilities are calculated as follows:

p
(

vk
i |h, λ

)
=

exp
(

bk
i +

∑
j hjW k

ij

)
∑

l exp
(

bl
i +
∑

j hjW l
ij

) = sm

bk
i +

∑
j

hjW k
ij



p
(
hj |v , λ

)
= σ

(
cj +

∑
i

∑
k

vk
i W k

ij

)
• After calculating probabilities, we sample using

Binomial/Bernoulli or Multinomial/Categorical distributions
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RBM QST

Algorithm (CDk algorithm for Quantum State Tomography)

• For epoch in total epochs:
• For mini-batch in training data:
• From input data v, sample h after calculating p(h|v)

• For k steps:
• Sample v ′ after calculating p(v ′|h′) (h for k = 1)
• Sample h′ after calculating p(h′|v ′)
• Calculate

〈
∂E(v ,h)
∂λ

〉
−
〈
∂E(v ′,h′)

∂λ

〉
• Update parameters λ
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RBM QST
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RBM QST

• Dont always need the density matrix. Can estimate
expectations values directly:

〈O〉 =
∑

i

QOi pi

QOi =
∑

j

Tr
(
OΠj

)
T−1

ji

• Have to take into account local depolarising noise.
• In general, RBMs take long time to train for small noise [3].
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RNN QST

• Sequential feed forward networks with notion of "memory"
[5]. Used often in word prediction and machine translation
[6].

• Diagrammatically a FNN is :

Input X Hidden H Output O
Wxh Who

• And RNN:

Input Xt Hidden Ht Output Ot
Wxh Who

Whh
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RNN QST
• Mathematically:

Ht = F1 (XtWxh + Ht−1Whh + bh)

Ot = F2 (HtWho + bo)

• Simple RNNs fail to capture long-term dependencies and
cause vanishing or exploding gradients [5].

C =
T∑

t=1

Ct

∂C
∂Whh

∼
t∑
k

∂Ht

∂Hk

∂Hk

∂Whh

∼
t∑
k

(W T
hh)t−kHk
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RNN QST
• Have to introduce better long term dependencies.

Examples are LSTM and GRU. LSTM have the following
structure [5]:

Ot = σ (XtWxo + Ht−1Who + bo) C̃t = tanh (XtWxc + Ht−1Whc + bc)

It = σ (XtWxi + Ht−1Whi + bi) Ct = Ft ◦ Ct−1 + It ◦ C̃t

Ft = σ (XtWxf + Ht−1Wxf + bf ) Ht = Ot ◦ tanh(Ct )
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RNN QST
• The cell state represents the long term memory of our

network

• The first "forgetful layer" tells the the cell state what to keep
and get rid of
• The next two layers represent the what new information to

include in the cell state
• The final layer represents the cumulative output of the cell

(multiplied with the cell "memory")
• Solves the vanishing gradient as you have extra terms:

∂C
∂Whh

∼ ∂Ct

∂Ck
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RNN QST

• In RNN-QST, the input is a string of N-qubit measurements
(m1, ..mn) ie. for four qubits, we have (0,2,1,3).

• The RNN can predict the n-th measurement given the
previous elements, ie. p(m4|021)

• Can then recover the full distribution:

p(m1...mn) = p(m1)p(m2|m1)....p(mn|m1...mn−1)

• RNN train faster than RBMs [3]. The required training data
for an RNN linearly with N, which is remarkable.
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Summary

• QST is important to find unknown states from
measurement and/or certify known states (ie. might be
affected by depolarising noise)

• Traditional methods like MLE are too slow for large number
of qubits
• Generative modelling from provide ways to earn probability

distributions of measurements and are a excellent choice
for the problem at hand
• RBMs and RNNs can be used for QST, the latter scales

linearly with number of qubits
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The End

All questions welcome!
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