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Mathematical Preliminaries

¢ Basic idea: can we reconstructing quantum states from
measurements? How to do so?
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Mathematical Preliminaries

¢ Basic idea: can we reconstructing quantum states from
measurements? How to do so?

An informationally complete positive-operator valued measure
[1] (POVM), N; is the set of operators on H such that:

M; > 0 Semi-Positivity
> ni=1
i

pi = Tr(pM;) Born rule
{N;} = span(B(H)) Informational Completeness
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Mathematical Preliminaries

¢ Given informational completeness, we can invert this
relationship
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Mathematical Preliminaries

¢ Given informational completeness, we can invert this
relationship

The density operator can be written as:
p=>_pT; N
i

Where:
Ty =Tr (M)

Is the called the overlap matrix.
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Mathematical Preliminaries

¢ Given informational completeness, we can invert this
relationship

The density operator can be written as:

p=>_pT; N
i

Where:
Ty =Tr (M)

Is the called the overlap matrix.
¢ Note that the overlap matrix may not be invertable
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Mathematical Preliminaries

A set of POVMs are given by Pauli-4 Tetrahedral operators:

1
M7etra = {ni = (1 +3i'0)}
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Mathematical Preliminaries

A set of POVMs are given by Pauli-4 Tetrahedral operators:
noot(oy o _1 2 —V2 - V6i
o 2712 \—v2 + V6i 4
( 1 \/§> Mae ( 2 —V2+ \/Ei)
3
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Mathematical Preliminaries
e Well then what is the problem? Experimentally, you cannot
know probabilities p;, you can only measure frequencies f;.

S I 00 7125
Mo Abedi i
Department of Physics University of Cologne




Mathematical Preliminaries
e Well then what is the problem? Experimentally, you cannot
know probabilities p;, you can only measure frequencies f;.
* Number of operators scales exponentially as 4" different
operators for N qubits.
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Mathematical Preliminaries
e Well then what is the problem? Experimentally, you cannot
know probabilities p;, you can only measure frequencies f;.

e Number of operators scales exponentially as 4V different
operators for N qubits.

The likelihood is a measure of the degree of belief in the
hypothesis that for a particular data set D, the system was
prepared in the quantum state p [2]. For QST, we have the
multinomial distribution:

k k

] n! .

£(olp) = M1 o = e [T e (o
i Pt
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Mathematical Preliminaries

e Consider the negative log instead which we call the cost
function

C=—Y filnpj==>"fiIn[Tr(pN;)] = D (D|p) + Hp
i i

Where Dy, is the KL divergence, a measure of how close
the actual probability distribution is to our measured data.
We want to minimise this.
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Mathematical Preliminaries
¢ Before talking about NN, | will give an example of an MLE
algorithm by (Hradil et al., 2004). Idea from calculus of
variations
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Mathematical Preliminaries
¢ Before talking about NN, | will give an example of an MLE
algorithm by (Hradil et al., 2004). Idea from calculus of
variations

The variation of C w.r.t. p is given by:

9C(p) =C(p—dp) —C(p) = Tr((R—1)p(R 1))
ép=(R-1)p+p(R-1)

And is 0 when:
Rp=pR=p

l

Where:
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Mathematical Preliminaries

e Start with maximally mixed state p = mll and some
precision e and set the trace distance TD > ¢
e While TD > e:
Calculate R
Compute trace distance 3Tr (|Ru o) — P(ky|) = TD
Compute dp(k) = ((Riky — 1)) Py + Py (R — 1))
Update pk1) = pk) + @dpk)
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Mathematical Preliminaries

Measures of Fidelity, Trace Distance, and Relative Entropy
with respect to Epochs

Fidelity
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RBM QST

¢ Generative models are suitable for this problem. Our
implementation based on (Carrasquilla et al., 2019).
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RBM QST

e Generative models are suitable for this problem. Our
implementation based on (Carrasquilla et al., 2019).
¢ The categorical input data is one-hot encoded:

(35—~ (o009)
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RBM QST

¢ Generative models are suitable for this problem. Our
implementation based on (Carrasquilla et al., 2019).
® The categorical input data is one-hot encoded:
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RBM QST

e Want to minimise the cost function (KL) divergence.
Generally hard so instead take cost function to be (CD)
(Salakhutdinov et al., 2007) (the difference between KL
divergences at 0 and k Gibbs sample steps)
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RBM QST

¢ Want to minimise the cost function (KL) divergence.
Generally hard so instead take cost function to be (CD)
(Salakhutdinov et al., 2007) (the difference between KL
divergences at 0 and k Gibbs sample steps)

¢ The activation probabilities are calculated as follows:

ep (bl awy) |
P<v,"|h,>‘) T, exp (b;+2jhjm/1§) = sm (b,.u;h,m*)

p(hilv,\) = o <cj+ZZv/‘W,§‘>
ik
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RBM QST

¢ Want to minimise the cost function (KL) divergence.
Generally hard so instead take cost function to be (CD)
(Salakhutdinov et al., 2007) (the difference between KL
divergences at 0 and k Gibbs sample steps)

¢ The activation probabilities are calculated as follows:

e (B W) |
P(V,-klh., )\> = > o (bl’-+zjh/W,j’-> =sm (b,kwL;h;W;)

p(hlv,\) =0 (CﬁZvaWé‘)
i k

¢ After calculating probabilities, we sample using
Binomial/Bernoulli or Multinomial/Categorical distributions
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RBM QST

e For epoch in total epochs:

* For mini-batch in training data:

e From input data v, sample h after calculating p(h|v)
For k steps:

o Sample v/ after calculating p(v'|H) (h for k = 1)

o Sample H' after calculating p(H'|v’)

Calculate <%> - <%>

Update parameters \
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RBM QST

Measures of Fidelity, Trace Distance, and Relative Entropy
with respect to Epochs
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RBM QST

¢ Dont always need the density matrix. Can estimate
expectations values directly:

(0) = Z P pj

]
Qf => "Tr(on)) 7'/.,.‘1
j
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RBM QST

¢ Dont always need the density matrix. Can estimate
expectations values directly:

(0) = Z of pi

1
QP =) Tr(on) ;!
J
¢ Have to take into account local depolarising noise.
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RBM QST

¢ Dont always need the density matrix. Can estimate
expectations values directly:

(0)=>"27p;
of =) Tr(om) T
J

* Have to take into account local depolarising noise.
¢ In general, RBMs take long time to train for small noise [3].
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RNN QST

¢ Sequential feed forward networks with notion of "memory"
[5]. Used often in word prediction and machine translation

[6].
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RNN QST

e Sequential feed forward networks with notion of "memory"
[5]. Used often in word prediction and machine translation
[6].

e Diagrammatically a FNN is :

W,
—— Input X LN
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RNN QST

e Sequential feed forward networks with notion of "memory"
[5]. Used often in word prediction and machine translation

[6].

e Diagrammatically a FNN is :

E—

Input X

e And RNN:

—— Input X;

th

Whh
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RNN QST
e Mathematically:
H: = F1 (Xe Wi + Hi—1 Whp + bp)
O; = 7o (HtWho + bo)
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RNN QST

e Mathematically:
H: = F1 (X¢Wyn + Hi—1 Whp + bp)
Ot = Fo (HtWho + bo)

¢ Simple RNNs fail to capture long-term dependencies and
cause vanishing or exploding gradients [5].
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RNN QST
e Have to introduce better long term dependencies.
Examples are LSTM and GRU. LSTM have the following
structure [5]:

Memory r ~ .
Cr1 t
Forget e
gate
Ft
o]
Hidden state
Heq J Hy
~f
Input XI
FC layer with Element-wise
III activation fuction Operator 2 Copy { Concatenate

O = 0 (Xt Wio + Hi_1 Who + bo)  Ct = tanh (X¢ W + Hy_1 Whe + be)
I = o (XtWyi + Hy_1 Whi + bi) Ct=F;0Ciy+1i0C
Fi=o0 (Xt fo + H[_1 fo + bf) H; =00 tanh(Ct)
o I 19/25
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RNN QST

e The cell state represents the long term memory of our
network
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RNN QST

® The cell state represents the long term memory of our
network

¢ The first "forgetful layer" tells the the cell state what to keep
and get rid of
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RNN QST

® The cell state represents the long term memory of our
network

¢ The first "forgetful layer" tells the the cell state what to keep
and get rid of

® The next two layers represent the what new information to
include in the cell state

¢ The final layer represents the cumulative output of the cell
(multiplied with the cell "memory")
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RNN QST

® The cell state represents the long term memory of our
network

¢ The first "forgetful layer" tells the the cell state what to keep
and get rid of

® The next two layers represent the what new information to
include in the cell state

¢ The final layer represents the cumulative output of the cell
(multiplied with the cell "memory")

¢ Solves the vanishing gradient as you have extra terms:

oc_ o
OWhpp 0Ck
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RNN QST

¢ In RNN-QST, the input is a string of N-qubit measurements
(mq,..mp) ie. for four qubits, we have (0,2,1,3).
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RNN QST

¢ In RNN-QST, the input is a string of N-qubit measurements
(my,..my) ie. for four qubits, we have (0,2, 1, 3).

e The RNN can predict the n-th measurement given the
previous elements, ie. p(my|021)
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RNN QST

¢ In RNN-QST, the input is a string of N-qubit measurements
(my,..my) ie. for four qubits, we have (0,2, 1, 3).

¢ The RNN can predict the n-th measurement given the
previous elements, ie. p(m,|021)

e Can then recover the full distribution:

p(my...mp) = p(my)p(me|my)....o(Mp|m;...mp_1)
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RNN QST

¢ In RNN-QST, the input is a string of N-qubit measurements
(my,..my) ie. for four qubits, we have (0,2, 1, 3).

¢ The RNN can predict the n-th measurement given the
previous elements, ie. p(m,|021)

e Can then recover the full distribution:

p(my...mp) = p(my)p(ma|my)....o(Mp|My...mp_1)

¢ RNN train faster than RBMs [3]. The required training data
for an RNN linearly with N, which is remarkable.
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Summary

e QST is important to find unknown states from
measurement and/or certify known states (ie. might be
affected by depolarising noise)
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Summary
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¢ Traditional methods like MLE are too slow for large number
of qubits
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Summary

e QST is important to find unknown states from
measurement and/or certify known states (ie. might be
affected by depolarising noise)

¢ Traditional methods like MLE are too slow for large number
of qubits

e Generative modelling from provide ways to earn probability
distributions of measurements and are a excellent choice
for the problem at hand
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Summary

e QST is important to find unknown states from
measurement and/or certify known states (ie. might be
affected by depolarising noise)

¢ Traditional methods like MLE are too slow for large number
of qubits

® Generative modelling from provide ways to earn probability
distributions of measurements and are a excellent choice
for the problem at hand

* RBMs and RNNs can be used for QST, the latter scales
linearly with number of qubits
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The End

All questions welcome!
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