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The many body problem

● The Hilbert space of a many-body problem grows exponentially with size.
● Analytic calculations of the wavefunction are essentially impossible.
● Approximations are used to describe these systems.
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Formulating the ML problem
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Goal

Encode the ground state wave-function Ψ(S) of a many-body system with S = (S1, ...,SN) in a neural
network.

Machine learning problems can be formulated in two parts:

1. Machine: We encode a high dimensional function Fλ(x) in a neural network, which
depends on the input x and on the network parameters λ.

2. Learning: We look for a set of optimal parameters λ∗ which minimizes a cost
function Cλ given a data set.
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Architecture Restricted Boltzmann Machine

● N visible nodes: x = {σz
1 , ..., σ

z
N};

● One hidden layer with the auxiliary spin variables h = {h1, ...,hM};
● The network parameters are complex⇒ they describe the phase and amplitude of

the wave function.

Ψλ(x, λ) = ∑
{hi}

e
∑
j
ajσ
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z
j
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Architecture Restricted Boltzmann Machine

● Quality: systematically improved by increasing the number of hidden variables M.;

● The hidden layer links all sites⇒ non local correlations.
● RBMs have no intralayer interaction: the hidden variables can be traced out

Ψλ(x, λ) = ∑
{hi}

e
∑
j
ajσ

z
j +∑

i
bihi+∑

i,j
Wi,jhiσ

z
j

= e
∑
j
ajσ

z
j
×

M
∏
i=1

Fi(S),

where

Fi(S) = 2 cosh
⎛
⎝
bi +∑

j
Wijσ

z
j
⎞
⎠
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Generative Modelling vs. NQS

Rajat’s presentation

Generative modelling NQS

Encoded function PW(x) ΨW(x)

Cost function Kullback-Leibler divergence Ground state energy functional

RBM W ∈ R W ∈ C

Minimization method Gradient descent Stochastic reconfiguration
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Samples and learning method
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● The many-body state is unknown (it is what we want to determine).
● We don’t have samples of the exact wave function Ψ.

Supervised learning is not possible here!

Consistent reinforcement learning (Variational Monte Carlo)
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Cost function Variational principle

● The variational principle gives us an upper bound for the ground state energy

E[Ψ] = ⟨Ψ∣H ∣Ψ⟩ ≥ E0

● It is possible to find the ground state by minimizing the energy functional.

Ψ0 = argminΨE[Ψ] Ψ0 = argminλE[Ψλ]
Ansatz: |Ψλ〉

Optimization problem:

the energy functional is

the cost function.
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Variational Quantum Monte Carlo Expectation Values

● We can "prepare" expectation values for a Monte Carlo application in the following
way

〈O〉 = 〈Ψ|O|Ψ〉
〈Ψ|Ψ〉 〈O〉 =

∑
x
〈Ψ|x〉〈x|O|Ψ〉∑
x
〈Ψ|x〉〈x|Ψ〉

Completeness

〈O〉 =
∑

x
|Ψ(x)|2OL(x)∑

x
|Ψ(x)|2

OL(x) =

∑
xx′ O

xx′
Ψ(x′)
Ψ(x)

● Thus, we identify a probability distribution for the operatorOL

⟨O⟩ = ∑
x

P(x)OL(x) , P(x) =
∣Ψ(x)∣2

∑x ∣Ψ(x)∣2
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Variational Quantum Monte Carlo Expectation Values

● Now, we can use the Metropolis Hastings algorithm to sample configurations from
P(x) and to calculate the expectation values.

Expectation Values

⟨O⟩ =

⟨Ψ∣O ∣Ψ⟩

⟨Ψ∣Ψ⟩

Ô⇒ E[OL] =
1
Ns

Ns
∑

k=1
OL(xk)

● The modified operatorsOL are Local operators.
● In particular, we will use the local energy

HL(x) = ∑
x′
Hxx′

Ψ(x′)
Ψ(x)
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Variational Quantum Monte Carlo Metropolis Hastings Algorithm

|x1〉 |x2〉 |x3〉 |x4〉 |x5〉 |x6〉 |x7〉 |x8〉 · · · |xN〉

Given a configuration |xj〉, construct a suggestion for the next configuration |xi〉 via some change of |xj〉 (e.g. spin flip)

Calculate the ratio of probabilities P = p(xi)
p(xj) = |Ψ(xi)|2

|Ψ(xj)|2

if P > 1: |xj〉 → |xi〉
else: |xj〉 → |xi〉 with probability P

Detailed Balance

P1

P1

W1,2

W2,1

Detailed Balance

Our transition probability P fulfils detailed balance such that in equilibrium we are sampling from

P(x) =
∣Ψ(x)∣2

∑x ∣Ψ(x)∣2
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Stochastic reconfiguration vs Gradient descent1

● Simulations for the transverse field Ising model.
● Gradient descent: the updates get stuck oscillating between wells in the energy

landscape.
● A new minimization method is required.
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1available code by: Emily Davis, Kevin Fischer, and Alex Hristov
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Variational Quantum Monte Carlo Stochastic reconfiguration

● The idea is to update the parameters λ in a way that mimics a time evolution

∣Ψε⟩ = e−εH ∣Ψ0,λ⟩ ≈ (1 − εH) ∣Ψ0,λ⟩

∣Ψε⟩ ≈ ∣Ψλ+δλ⟩
For small ε

Are we closer to the ground state?

● H = E0 ∣E0⟩ ⟨E0∣ + E1 ∣E1⟩ ⟨E1∣ + ..., such that E0 < E1 < E2...

● After N steps:
∣ΨNε⟩ = e−εNH ∣Ψ0λ⟩

= α0e
−εNE0 ∣E0⟩ +α1e

−εNE1 ∣E1⟩ + ...

Ð→ ∣E0⟩ YES!

● By investigating how the parameters change, we find

λ→ λ − ηS−1∇λ ⟨H⟩
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Variational Quantum Monte Carlo Stochastic reconfiguration

Learning rate

Proportional to ε, η ≈ 10−2, 10−3

λ→ λ − ηS−1∇λ ⟨H⟩

BM Ansatz Ψλ(x)

Oai = σ
z
i

Obi = tanh(θi(x))

Owij = σ
z
i tanh(θj(x))

θ = bj +Wijσ
z
j

Fisher Matrix

•Differentiates between SR and plain GD;

•Takes the curvature of the quantum space into account;

Sα,β = ⟨O†
αOβ⟩ − ⟨O†

α⟩ ⟨Oβ⟩

Oωij ∣x⟩ =
∂ log(Ψλ(x))

∂ωij
∣x⟩

Energy gradient

∂α ⟨H⟩ = E[OαHL] − E[Oα]E[HL]
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Overview

Random weightsW Ns samples from Metropolis Hastings

Pacc = min
(
1, |Ψ(xi)|2
|Ψ(xj)|2

)

N1
...
NS

Compute the stochastic mean values
E[HL], E[Oα]

Compute S and∇λ 〈H〉

Stochastic reconfiguration
λ→ λ− ηS−1∇λ 〈H〉

Does Eλ converge?Done! X
Yes

No
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Models Transverse field Ising and AFM Heisenberg

● This paper analyses two model Hamiltonians

transverse-field Ising

HTFI = −h∑
i
σ

x
i −∑

i,j
σ

z
i σ

z
j

antiferromagnetic Heisenberg

HAFM = ∑

i,j
σ

x
i σ

x
j + σ

y
i σ

y
j + σ

z
i σ

z
j

● RBM gives us the wavefunction on the computational basis.

ΨM (S,W) =
∑
hi

e

∑
j
ajσ

z
j+

∑
i
bihi+

∑
ij
Wi,jhiσ

z
j = 〈S|ΨM 〉

|ΨM 〉 =
∑
S 〈S|ΨM 〉 |S〉

which determines the whole state (amplitude and phase).
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Neural network ground states

Figure: Neural Network representation of the many body ground states. The horizontal axis represents
the 80 lattice sites. The colormap encodes the fth feature map W(f)j for each site.
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Neural network ground states

Figure: Neural Network representation of the many body ground states. The horizontal axis represent
the 10 × 10 lattice sites. The colormap encodes the fth feature map W(f)j for each site. The density of
sites is alpha = 16.
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Ground state energies

● By increasing the hidden variable density α, we systematically improve our results.

Controllable and arbitrary accuracy

Figure: Error for the ground state energy of A. 1D TFI model, 80 sites. B. 1D AFH model, 80 sites. C. AFH
model, 10 × 10 sites.
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Unitary dynamics

● NQS can be extended to the time dependent Schrödinger equation.

W →W(t)

time dependent network weights

● The new cost function is

R(Ẇ(t)) = dist(∂tΨ,−iHΨ) Dirac-Frenkel variational principle

● Now the weights are updated according to

Ẇ(t) = −iS−1(t)∇WH(t)

● New sampling method⇒ Time-Dependent Variational Monte Carlo 2

2Carleo et al. (again ,)
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Unitary dynamics Results

Quantum quench

The system is initially in the ground state for a certain field hi. At t = 0, we instantaneously change the
field to a new value hj , and let the system evolve under the new Hamiltonian.

Figure: NQS results (solid lines) for a quantum quench in the parameters. A. Transverse spin
polarization in the TFI model. B. Time dependent nearest neighbors spin correlations in the AFH model.
The dashed lines are the exact results.
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Outlook and summary

Summary

● The high accuracy of the unitary dynamics shows that NQS have applications beyond
ground state physics.

● The method provides the best variational results reported to date for the 2D AFH.

Outlook

● Treating quantum systems other than interacting spins;
● Formal analysis of the NQS entanglement properties;
● More advanced architectures;
● Answers to challenging questions about interacting fermions.

Questions? ,
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