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Restricted Boltzmann Machines

Each circle represents a
node, which can take one of 2
values (o or 1). Nodes in the
same layer are not connected
to each other




Energy and Probability

E(x,h) = —-h'Wx —-c¢'x—b'h

p(x,h) = eXP(Z_E)




Conditional Probability
p(h|x) = IL;p(h;|x)
p(h; = 1|x) = sigm(b; + W .x)

p(x|h) = Iy p(z |h)
p(z = 1|h) = sigm(c; + h" W)



Free Energy/Effective Visible Energy

p(x) = X exp(—E(x,h))/Z
p(x) = exp(c’ x + X;log[l + exp(b; + W,.x)])/Z
we can define a free energy,
F(x) = —c'x — ¥, log(1 + exp(b; + W .x))
Then, p(x) = exp(—F(x)/Z



softplus(x) = log(1 + exp(x))
F(x) = —c'x — ¥;s0ftplus(b; + W .x)

Rows of j can be understood as
‘features’. If x has the same

features, then the probability of 3
X is higher

Image source: Softplus
https://www.researchgate.net/figure/Th
e-Softplus-function-In1-exp-compared-t
o-max0_fig2 336602359 [accessed 30
May, 2021] max(0, x)




Loss Function (Kullbach-Liebler Divergence)

Measures the non-overlapping, or diverging, areas under the two curves

Da(P | @) = Y Ple)log( 22 )

p)/ X \qx /) D (P|0)



Contrastive Divergence

- 9log[p(x)]
90

= <80E(x,h)|xt>h — (9pE(x,h))x,h

The first term is called the positive phase, and the second is called the
negative phase. The second term is hard to compute. We use Contrastive
Divergence (Hinton 2002) to evaluate the second term. We replace the
average by a point estimate (). This point estimate is obtained by gibbs
sampling



Gibbs Sampling
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Contrastive Divergence
(0pE(x,h)|x" ) ~ pE(x",h") where h’ = p(h = 1|x")
(OpE(x,h))xn =~ OpE (X, h) where h = p(h = 1|%)
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Contrastive Divergence

| p(x,h)




Parameter Update
W+ = a(htxtT — hx')
b+ = a(h’ — h)

c+ = a(x’ — )

Persistent Contrastive Divergence

Initialise the Gibbs Chain using negative sample from previous iteration instead of training
example from current iteration



Learning Thermodynamics with Boltzmann Machines
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A Boltzmann machine is a stochastic neural network that has been extensively used in the layers of deep
architectures for modern machine learning applications. In this paper, we develop a Boltzmann machine that
is capable of modeling thermodynamic observables for physical systems in thermal equilibrium. Through
unsupervised learning, we train the Boltzmann machine on data sets constructed with spin configurations
importance sampled from the partition function of an Ising Hamiltonian at different temperatures using Monte
Carlo (MC) methods. The trained Boltzmann machine is then used to generate spin states, for which we compare
thermodynamic observables to those computed by direct MC sampling. We demonstrate that the Boltzmann
machine can faithfully reproduce the observables of the physical system. Further, we observe that the number of
neurons required to obtain accurate results increases as the system is brought close to criticality.

DOI: 10.1103/PhysRevB.94.165134
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(a) KL divergence vs number of training steps
(b) Comparision of probability distribution obtained from RBM with exact results

1D Ising model with N=6
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2D Ising Model on square lattice with periodic boundaries (N=64)
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Scaling of the specific heat with the number of hidden nodes. In (a) scaling at different temperatures
T with fixed system size. In (b) we see the scaling at criticality for different system sizes L. Dotted
lines represent the exact value computed on the spin configurations of the training data set. The
number of hidden nodes for faithful generation increases with system size, and for a fixed system
size, it is large near the critical region



Solving Statistical Mechanics Using Variational Autoregressive
Networks
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We propose a general framework for solving statistical mechanics of systems with finite size. The approach
extends the celebrated variational mean-field approaches using autoregressive neural networks, which support
direct sampling and exact calculation of normalized probability of configurations. It computes variational
free energy, estimates physical quantities such as entropy, magnetizations and correlations, and generates
uncorrelated samples all at once. Training of the network employs the policy gradient approach in
reinforcement learning, which unbiasedly estimates the gradient of variational parameters. We apply our
approach to several classic systems, including 2D Ising models, the Hopfield model, the Sherrington-
Kirkpatrick model, and the inverse Ising model, for demonstrating its advantages over existing variational
mean-field methods. Our approach sheds light on solving statistical physics problems using modern deep
generative neural networks.

DOI: 10.1103/PhysRevLett.122.080602



Autoregressive Networks

S S S h S

N
g0(s) = | | go(si | 51, .. si-1).
i=1

Autoregressive networks with different architectures



Variational Autoregressive Networks

Consider a Boltzmann Distribution of the kind p(s) = exp(—3E(s))/Z
The variational approach adopts an ansatz for the joint distribution gg(s)
parametrized by variational parameters #, and adjusts them so that gy(s) is
as close as possible to the Boltzmann distribution p(s).

The closeness between the two can be measured by the KL Divergence.

a(anle) = Yooty n( %)) = e, 1), @

where
Fo=3 > a®PEG) +has)] ()

1s the variational free energy corresponding to distribution
qo(s).



Variational Autoregressive Network
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Gradient Estimator

BVoFy = Vo ) [q0(s) - (BE(s) + In go(s))]

S

= > [Voqe(s) - (BE(s) +In o(s)) + qo(s) Ve In go(s)]

= By-quts) | Vo 10 4u(®) - (BE(S) + In go(s))
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Ising Model using VAN
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(a) Free energy per site and its relative error of
ferromagnetic Ising model on 16 x 16 square lattice with periodic
boundary condition. (b) Entropy per site of antiferromagnetic
Ising model on triangular lattices of various sizes L with periodic
boundary condition.



Sherrington Kirkpatrick Model

Given a configuration of N Ising spins,
0 = (Gla°'°70-N) = ZN — {_1+1}N,
the Hamiltonian of the model 1s given by

1 N
Hy(o) =— ). gj0:0j,

\/Ni.j:l

where (g;;) are i.1.d. standard Gaussian random variables



Sherrington Kirkpatrick Model using VAN
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Free energy of SK model with N = 20 spins. The
inset shows relative errors to exact values in a larger f regime.
Bethe converges only when f < 1.5.



Sherrington Kirkpatrick Model
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Evolution of mean and variance of the loss function during
the training of VAN on an SK model with N = 20 spins, g = 0.3.
The light red area denotes variance, the red line denotes mean, and
the blue dashed line denotes the exact free energy value.



Summary

We looked at 2 different ways of generating probability distributions:

e Restricted Boltzmann Machines are effective for identifying features in a
given probability distribution, and regenerating it. This makes them useful in
statistical mechanics to generate probability distributions

e In situations where the monte carlo data set is difficult to obtain, but
Hamiltonian is known, variational autoregressive networks can be used to
generate probability distributions
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