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Restricted Boltzmann Machines

● Each circle represents a 
node, which can take one of 2 
values (0 or 1). Nodes in the 
same layer are not connected 
to each other



Energy and Probability



Conditional Probability



Free Energy/Effective Visible Energy



Rows of j can be understood as 
‘features’. If x has the same 
features, then the probability of 
x is higher

Image source: 
https://www.researchgate.net/figure/Th
e-Softplus-function-ln1-exp-compared-t
o-max0_fig2_336602359 [accessed 30 
May, 2021]



Loss Function (Kullbach-Liebler Divergence)
Measures the non-overlapping, or diverging, areas under the two curves



Contrastive Divergence



Gibbs Sampling



Contrastive Divergence



Contrastive Divergence



Parameter Update

Persistent Contrastive Divergence
Initialise the Gibbs Chain using negative sample from previous iteration instead of training 
example from current iteration



Learning Thermodynamics with Boltzmann Machines



1D Ising model with N=6

(a) KL divergence vs number of training steps
(b) Comparision of probability distribution obtained from RBM with exact results



2D Ising Model on square lattice with periodic boundaries (N=64)



Scaling of the specific heat with the number of hidden nodes. In (a) scaling at different temperatures 
T with fixed system size. In (b) we see the scaling at criticality for different system sizes L. Dotted 
lines represent the exact value computed on the spin configurations of the training data set. The 
number of hidden nodes for faithful generation increases with system size, and for a fixed system 
size, it is large near the critical region



Solving Statistical Mechanics Using Variational Autoregressive 
Networks



Autoregressive Networks



Variational Autoregressive Networks



Variational Autoregressive Network



Gradient Estimator



Ising Model using VAN



Sherrington Kirkpatrick Model



Sherrington Kirkpatrick Model using VAN



Sherrington Kirkpatrick Model



Summary

We looked at 2 different ways of generating probability distributions:

● Restricted Boltzmann Machines are effective for identifying features in a 
given probability distribution, and regenerating it. This makes them useful in 
statistical mechanics to generate probability distributions

● In situations where the monte carlo data set is difficult to obtain, but 
Hamiltonian is known, variational autoregressive networks can be used to 
generate probability distributions
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