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Outline

Machine Learning

- Building blocks of neural network
- Underfit and overfit
- Double descent

2D Ferromagnetic Ising model

Model description

Machine learning of two phases using Neural networks
Data collapse + Finite scaling

Extension to triangular lattice

Ising Gauge theory

- Setup
- Results from CNN (Convolutional neural network)

Summary



Machine learning

- Subfield of Al to develop algorithms capable of

learning from data automatically
- Sustained motivation? - Availability of big data
sets
- Applications in physics
- 3 broad paradigms in ML
- Supervised learning- Classification, Regression
- Unsupervised learning - Clustering, association,
dimensionality reduction
- Reinforcement learning - Q-Learning, Deep Q

- Neural networks used in all 3
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Building blocks of neural network
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Image Source: https://pathmind.com/wiki/neural-network
https://becominghuman.ai/beginners-guide-cnn-image-classifier-part-1-140c8a1f3c12
https://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy
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Building blocks of neural network
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Image Source: https://pathmind.com/wiki/neural-network
https://becominghuman.ai/debunking-convolutional-neural-networks-cnn-with-practical-examples-688284c45b85
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https://towardsdatascience.com/overfitting-underfitting-and-the-bias-variance-tradeoff-83b42fb11efb

Double Descent

Train Error
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- Universal phenomenon in modern deep
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https://openai.com/blog/deep-double-descent/

2D Ising model

- Hamiltonian for classical Ising model
H= -JZSiSJ.

- Indices i,j run over nearest neighbours
on 2D lattice

- Onsager proved the phase transition in
the thermodynamic limit from an ordered
ferromagnet (with all spins aligned) to a
(disordered) paramagnetic phase at the
critical temperature T /J = 2/log(1+v2)
=2.26




Second order phase transition

Also called "continuous phase transitions".
Characterized by a divergent suscepitibility,

an infinite correlation length, and a power 081

law decay of correlations near criticality. Z o6 ] ]
- X -Temp, Y - order parameter 2|

(magnetization) = 04F ]
- Ferromagnetic - 1 oz [ ]
- Paramagnetic - 0 I
- Drops to zero at the critical temp. Scaling 03' — 15 2

ansatz

Source: http://farside.ph.utexas.edu/teaching/329/lectures/node110.html
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Using NN

- Employ logistic regression to classify the states of the 2D Ising model
according to their phase of matter

- If successful, this can be used to locate the position of the critical point in
more complicated models where an exact analytical solution has so far
remained elusive

Setup - Demo!




Machine learning of two phases

- 100 neurons in hidden layer e

- For each T, Monte Carlo
sampling is followed by
thermalization

- Output gives the probability that
the state is one of the 2

- Results on test data already 02+
shows finite sized effects
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Source: https://www.nature.com/articles/nphys4035
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Data collapse + Finite scaling

Output layer

- Scaling ansatz is a power law close
to the critical temperature
- Scaling X values by t = (T-Tc) and

the L raised to a power (scaling i o O
ansatz) results in data collapse sl & %
- Exponents are known . £ f 2301
- Tocalculate Tc, T*/J vs. 1/Lisused = °°f : S
where T* is the crossing § sl $ -
temperature £2 2281
- NN is able to identify a finite 2r F i =
scaling behaviour of a physical 0.0 li® o s .
Observable 10 5 tL(])/v 5 10 0.00 0125 0.10

Source: https://www.nature.com/articles/nphys4035
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Extension to triangular lattice

- Neural network generalises problems to other lattice structures without being

trained.
- Correct prediction of critical values in triangular lattice ising spin model
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ISing gauge theory H=]) Q, where the charge Q,=),_ o7 is the sum over the

Ising variables located in the lattice bonds incident on vertex v,

- Conventional order parameters . A —— .
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disordered/topological phases
- Using CNN to train Monte Carlo
configurations from Ising Gauge
theory at T=0 and T=infinity ‘
- NN still discriminates in-spite of
the lack of order parameter
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Source: https://www.nature.com/articles/nphys4035
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Ising gauge theory

- No finite temperature phase
transition. So, sampling from
T=0 and T=infinity

- Butin finite systems, system
expected to slowly cross-over
to high temperature phase

- T*~Nexp(2JB)

T*/]~1/Inv/N

Source: https://www.nature.com/articles/nphys4035

Output layer
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Summary

- Understanding models with overfit/underfit cases

- NN used to encode phases of matter, discriminate phase transitions in
correlated many-body systems

- Learns order parameter without knowledge of energy, locality conditions

- Extends to different lattice structures



